Mostrar o rexistro simple do ítem

dc.contributor.authorPirela, Valentina
dc.contributor.authorCampoy-Quiles, Mariano
dc.contributor.authorMüller, Alejandro J.
dc.contributor.authorMartín, Jaime
dc.date.accessioned2023-03-14T17:42:42Z
dc.date.available2023-03-14T17:42:42Z
dc.date.issued2022-11-23
dc.identifier.citationPIRELA, V., CAMPOY-QUILES, M., MÜLLER, A.J. y MARTIN, J., 2022. Unraveling the Influence of the Preexisting Molecular Order on the Crystallization of Semiconducting Semicrystalline Poly(9,9-di-n-octylfluorenyl-2,7-diyl (PFO). Chemistry of Materials, vol. 34, no. 23, pp. 10744-10751. ISSN 1520-5002. DOI https://doi.org/10.1021/acs.chemmater.2c02917.es_ES
dc.identifier.issn1520-5002
dc.identifier.urihttp://hdl.handle.net/2183/32702
dc.description.abstract[Abastract]: Understanding the complex crystallization process of semiconducting polymers is key for the advance of organic electronic technologies as the optoelectronic properties of these materials are intimately connected to their solid-state microstructure. These polymers often have semirigid backbones and flexible side chains, which results in a strong tendency to organize/order in the liquid state. Therefore, crystallization of these materials frequently occurs from liquid states that exhibit-at least partial-molecular order. However, the impact of the preexisting molecular order on the crystallization process of semiconducting polymers-indeed, of any polymer-remained hitherto unknown. This study uses fast scanning calorimetry (FSC) to probe the crystallization kinetics of poly(9,9-di-n-octylfluorenyl-2,7-diyl (PFO) from both an isotropic disordered melt state (ISO state) and a liquidcrystalline ordered state (NEM state). Our results demonstrate that the preexisting molecular order has a profound impact on the crystallization of PFO. More specifically, it favors the formation of effective crystal nucleation centers, speeding up the crystallization kinetics at the early stages of phase transformation. However, samples crystallized from the NEM state require longer times to reach full crystallization (during the secondary crystallization stage) compared to those crystallized from the ISO state, likely suggesting that the preexisting molecular order slows down the advance in the latest stages of the crystallization, that is, those governed by molecular diffusion. The fitting of the data with the Avrami model reveals different crystallization mechanisms, which ultimately result in a distinct semicrystalline morphology and photoluminescence properties. Therefore, this work highlights the importance of understanding the interrelationships between processing, structure, and properties of polymer semiconductors and opens the door for performing fundamental investigations via newly developed FSC methodologies of such materials that otherwise are not posible with conventional techniques.es_ES
dc.description.sponsorshipGobierno Vasco; IT1503-22.J.M.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación; PGC2018-094620 A-I00es_ES
dc.description.sponsorshipXunta de Galicia; ED431F 2021/009es_ES
dc.language.isoenges_ES
dc.publisherACS Publicationses_ES
dc.relation.urihttps://doi.org/10.1021/acs.chemmater.2c02917es_ES
dc.rightsAttribution 4.0 International (CC BY 4.0)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleUnraveling the Influence of the Preexisting Molecular Order on the Crystallization of Semiconducting Semicrystalline Poly(9,9-di‑n‑octylfluorenyl-2,7-diyl (PFO)es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleChemistry of Materialses_ES
UDC.volume34es_ES
UDC.issue23es_ES
UDC.startPage10744es_ES
UDC.endPage10751es_ES
dc.identifier.doihttps://doi.org/10.1021/acs.chemmater.2c02917


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem