Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Special Issue on Applied Artificial Neural Networks

Thumbnail
Ver/abrir
Gestal_2022_Special_Issue_Applied_Artificial_Neural_Networks.pdf (491.6Kb)
Use este enlace para citar
http://hdl.handle.net/2183/32249
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
Special Issue on Applied Artificial Neural Networks
Autor(es)
Gestal, M.
Data
2022
Cita bibliográfica
Gestal, M. Special Issue on Applied Artificial Neural Networks. Appl. Sci. 2022, 12, 9551. https://doi.org/10.3390/app12199551
Resumo
[Abstract]: Over the years there have been many attempts to understand, and subsequently imitate, the way that humans try to solve problems, so it can help to artificially achieve the same kind of intelligent behavior. Among these attempts, one of them has been especially successful: the artificial neural networks (ANNs), which simplify the functioning of one of the most complex organs in nature: the brain. From its earliest approaches, these networks have provided excellent solutions in the most diverse fields of research. After overcoming a small hurdle in the last stage of their use, they have revived in recent years under the nomenclature of deep neural networks, which are based on the same bases of those of ANNs and take advantage of the emergence of new learning algorithms and the greater computational capabilities that exist nowadays. This Special Issue is aimed to accommodate, on one hand, the latest theoretical advances in this field, such as new learning paradigms or new architectures, and on the other hand, those more recent works in the scientific field where the authors have used any of the many types of available neural networks or those new theorical proposals to reach the best results in their areas. Eleven manuscripts were accepted in this Special Issue, most of them emphasizing the highly successful applicability of ANNs in a great variety of fields.
Palabras chave
Artifical Neural Networks (ANNs)
Learning paradigms
Architectures
 
Versión do editor
https://doi.org/10.3390/app12199551
Dereitos
Atribución 3.0 España
 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/ ).
 
ISSN
2076-3417

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións