On the group of similitudes and its projective group

Use este enlace para citar
http://hdl.handle.net/2183/32011Coleccións
Metadatos
Mostrar o rexistro completo do ítemTítulo
On the group of similitudes and its projective groupAutor(es)
Director(es)
Jacobson, NathanData
1957Centro/Dpto/Entidade
Yale UniversityResumo
[Abstract]: Given a vector space nr over a field, with a
non-degenerate quadratic form Q, we consider the linear
transformations S which take any vector x ϵ nr into
a vector xS such that Q(xS).= ρQ(x), where ρ ≠ 0 only
depends on S. Such transformations are called similitudes.
The group of similitudes seems to be more natural than the
orthogonal group.
The projective group of similitudes can be realized
as a group of automorphisms of the subalgebra C+ of the
Clifford algebra. These automorphisms can be characterized
in a similar way as the automorphisms corresponding to the
orthogonal group have been characterized before. The study
of the elements of the group of similitudes as automorphisms
of the whole Clifford algebra allow us to find the structure
of this group, when the index of Q is greater than 0.
Under this assumption the automorphisms of the
group of similitudes and its projective group are found
using the known results about the automorphisms of the
orthogonal or rotation groups and their projective groups.
The methods which lead to the determination of these automorphisms
are a combination of Dieudonné's methods for
finding out the automorphisms of the orthogonal group using
the structure of these groups and Rickart's methods
which consist in distinguishing the extremal involutions
from non-extremal involutions by group theoretic properties.
In order to study the properties of certain similitudes
a correspondence has been established between the
centralizer of such similitudes in the orthogonal group
and the unitary group of a hermitian form over a field.
This suggests the definition of a certain algebra attached
to a hermitian form over a field such that the relations
between this algebra and the group of unitarian similitude
are analogous to the relations of the Clifford algebra
with the group of similitudes.
We only mention here that in a similar way given
a hermitian form over a division ring of quaternions one
can connect with it a quadratic form (see [10]) and define
an algebra corresponding to this hermitian form.
It was found convenient to establish first of all
certain general properties of the Clifford algebra without
any assumption on the non-degeneracy of Q which might
have some interest in themselves. The equivalent known
results for the Grassman algebra follow from ours when the
quadratic form Q is identically 0.
Descrición
A dissertation presented to the Faculty of the Graduate School of Yale University in candidacy for the degree of Doctor of Philosophy.
Dereitos
Os titulares dos dereitos de propiedade intelectual autorizan a visualización do contido desta tese a través de Internet, así como a súa reproducción, gravación en soporte informático ou impresión para o seu uso privado e/ou con fins de estudo e de investigación. En nengún caso se permite o uso lucrativo deste documento. Estos dereitos afectan tanto ó resumo da obra como o seu contido Los titulares de los derechos de propiedad intelectual autorizan la visualización del contenido de esta tesis a través de Internet, así como su repoducción, grabación en soporte informático o impresión para su uso privado o con fines de investigación. En ningún caso se permite el uso lucrativo de este documento. Estos derechos afectan tanto al resumen de la obra como a su contenido