Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Traballos académicos (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Traballos académicos (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identificación de xenes relacionados con peor prognóstico en cancro de mama usando autoencoders

Thumbnail
Ver/abrir
RodriguezSantos_David_TFG_2022.pdf (3.026Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31923
Atribución-NoComercial-CompartirIgual 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 3.0 España
Coleccións
  • Traballos académicos (FIC) [715]
Metadatos
Mostrar o rexistro completo do ítem
Título
Identificación de xenes relacionados con peor prognóstico en cancro de mama usando autoencoders
Autor(es)
Rodríguez Santos, David
Director(es)
Fernández-Lozano, Carlos
Data
2022
Centro/Dpto/Entidade
Universidade da Coruña. Facultade de Informática
Descrición
Traballo fin de grao (UDC.FIC). Enxeñaría Informática. Curso 2021/2022
Resumo
[Resumen] En la época actual, el estado de la tecnología es tal que, para cualquier problema, existe cada vez un mayor número de datos que lo describe. En concreto, en el ámbito de la biología molecular se dispone de plataformas de secuenciación de próxima generación o Next Generation Sequencing (NGS) que son capaces de extraer de una muestra celular una cantidad ingente de datos (superior al gigabyte por cada muestra). Dicha información, en forma de cadenas de texto y letras que representan la secuencia de ADN de la muestra secuenciada, se procesa y se alinea contra el genoma humano para obtener los niveles de expresión génica de la misma. El número de pacientes es, debido a los costes de proceso de secuenciación y, en la mayoría de los casos, muy inferior al número de genes secuenciados. La alta dimensionalidad de los datos supone un problema a la hora de analizarlos, ya que para obtener un resultado estadísticamente sólido y fiable, el número de muestras debe aumentar con la dimensionalidad. A partir de una base de datos pública y de acceso abierto con más de 20.000 genes secuenciados para cada paciente, el trabajo consiste en la aplicación de técnicas de inteligencia artificial para su análisis, en concreto, mediante la aplicación de autoenconders en cáncer de mama. Este tipo de técnicas pertenece a las conocidas Redes de Neuronas Artificiales de entrenamiento no supervisado y su principal uso consiste en el aprendizaje e identificación de una representación de los datos suficientemente informativa con el menor número posible de variables, en este caso genes. La enfermedad que se estudiará presenta unos patrones comunes que pueden ser potencialmente descubiertos con este tipo de técnicas y así facilitar el análisis por parte de los clínicos que podrían estudiar las vías de comunicación celular en las que intervienen dichos genes de manera mucho más simplificada.
 
[Abstract] Nowadays, the state of technology is such that, for any problem, there is more and more data that describes it. Specifically, in the field of molecular biology, there are Next Generation Sequencing platforms (NGS) that are capable of extracting a huge amount of data from a cell sample (greater than a gigabyte for each sample). This information, in the form of text strings and letters that represent the DNA sequence of the sequenced sample, is processed and aligned against the human genome to obtain its gene expression levels. The number of patients is, due to the costs of the sequencing process and, in most cases, much lower than the number of genes sequenced. The high dimensionality of the data is a problem when analyzing it, since to obtain a statistically robust and reliable result, the number of samples must increase with dimensionality. Using a public and open access database with more than 20,000 genes sequenced for each patient, the project consists of the application of artificial intelligence techniques for their analysis, specifically, through the application of autoencoders in breast cancer. This type of technique belongs to the well-known Neural Networks of unsupervised training and its main use consists of learning and identifying a sufficiently informative data representation with the least possible number of variables, in this case genes. The disease to be studied has common patterns that can potentially be discovered with this type of technique and thus facilitate analysis by clinicians who could study the cellular communication pathways in which these genes are involved in a much more simplified way.
 
Palabras chave
Reducción de la dimensionalidad
Redes de neuronas artificiales
Aprendizaje no supervisado
Autoencoders
Selección de características
Dimensionality reduction
Artificial neural network
Unsupervised learning
Feature selection
 
Dereitos
Atribución-NoComercial-CompartirIgual 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións