Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parallel ant colony optimization for the training of cell signaling networks

Thumbnail
Ver/abrir
Gonzalez_Patricia_2022_Parallel_Ant_Colony.pdf (2.082Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31806
Atribución-NoComercial-SinDerivadas 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 3.0 España
Coleccións
  • Investigación (FIC) [1728]
Metadatos
Mostrar o rexistro completo do ítem
Título
Parallel ant colony optimization for the training of cell signaling networks
Autor(es)
González, Patricia
Prado-Rodríguez, Roberto
Gábor, Attila
Saez-Rodriguez, Julio
Banga, Julio R.
Doallo, Ramón
Data
2022
Cita bibliográfica
P. González, R. Prado-Rodriguez, A. Gábor, J. Saez-Rodriguez, J. R. Banga, y R. Doallo, «Parallel ant colony optimization for the training of cell signaling networks», Expert Systems with Applications, vol. 208, 1 dic. 2022, doi: 10.1016/j.eswa.2022.118199.
Resumo
[Abstract]: Acquiring a functional comprehension of the deregulation of cell signaling networks in disease allows progress in the development of new therapies and drugs. Computational models are becoming increasingly popular as a systematic tool to analyze the functioning of complex biochemical networks, such as those involved in cell signaling. CellNOpt is a framework to build predictive logic-based models of signaling pathways by training a prior knowledge network to biochemical data obtained from perturbation experiments. This training can be formulated as an optimization problem that can be solved using metaheuristics. However, the genetic algorithm used so far in CellNOpt presents limitations in terms of execution time and quality of solutions when applied to large instances. Thus, in order to overcome those issues, in this paper we propose the use of a method based on ant colony optimization, adapted to the problem at hand and parallelized using a hybrid approach. The performance of this novel method is illustrated with several challenging benchmark problems in the study of new therapies for liver cancer.
Palabras chave
Cell signaling network
Metaheuristics
Ant Colony Optimization
High performance computing
MPI
OpenMP
 
Versión do editor
https://doi.org/10.1016/j.eswa.2022.118199
Dereitos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
0957-4174

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións