Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks

Thumbnail
Ver/abrir
Gende_Mateo_2021_Automatic_Segmentation_and_Visualization.pdf (1.527Mb)
Use este enlace para citar
http://hdl.handle.net/2183/29456
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks
Autor(es)
Gende, M.
Moura, Joaquim de
Novo Buján, Jorge
Charlón, Pablo
Ortega Hortas, Marcos
Data
2021
Cita bibliográfica
Gende, M.; de Moura, J.; Novo, J.; Charlón, P.; Ortega, M. Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks. Eng. Proc. 2021, 7, 2. https://doi.org/10.3390/engproc2021007002
Resumo
[Abstract] The Epiretinal Membrane (ERM) is an ocular disease that appears as a fibro-cellular layer of tissue over the retina, specifically, over the Inner Limiting Membrane (ILM). It causes vision blurring and distortion, and its presence can be indicative of other ocular pathologies, such as diabetic macular edema. The ERM diagnosis is usually performed by visually inspecting Optical Coherence Tomography (OCT) images, a manual process which is tiresome and prone to subjectivity. In this work, we present a methodology for the automatic segmentation and visualisation of the ERM in OCT volumes using deep learning. By employing a Densely Connected Convolutional Network, every pixel in the ILM can be classified into either healthy or pathological. Thus, a segmentation of the region susceptible to ERM appearance can be produced. This methodology also produces an intuitive colour map representation of the ERM presence over a visualisation of the eye fundus created from the OCT volume. In a series of representative experiments conducted to evaluate this methodology, it achieved a Dice score of 0.826±0.112 and a Jaccard index of 0.714±0.155. The results that were obtained demonstrate the competitive performance of the proposed methodology when compared to other works in the state of the art.
Palabras chave
Epiretinal membrane
Machine learning
Medical diagnostic imaging
Optical coherence tomography
 
Descrición
Presented at the 4th XoveTIC Conference, A Coruña, Spain, 7–8 October 2021.
Versión do editor
https://doi.org/10.3390/engproc2021007002
Dereitos
Atribución 4.0 Internacional

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións