Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Algorithms Reveals Country-Specific Metagenomic Taxa from American Gut Project Data

Thumbnail
View/Open
Linares_Blanco_Jose_2021_Maching_learning_algorithms.pdf (188.6Kb)
Use this link to cite
http://hdl.handle.net/2183/28413
Atribución-NoComercial 4.0 International (CC BY-NC 4.0)
Except where otherwise noted, this item's license is described as Atribución-NoComercial 4.0 International (CC BY-NC 4.0)
Collections
  • GI-RNASA - Artigos [156]
Metadata
Show full item record
Title
Machine Learning Algorithms Reveals Country-Specific Metagenomic Taxa from American Gut Project Data
Author(s)
Liñares Blanco, José
Fernández-Lozano, Carlos
Seoane Fernández, José Antonio
López-Campos, Guillermo
Date
2021
Citation
Liñares-Blanco J, Fernandez-Lozano C, Seoane JA, Lopez-Campos G. Machine Learning Algorithms Reveals Country-Specific Metagenomic Taxa from American Gut Project Data. Studies in Health Technology and Informatics. 2021 May;281:382-386. DOI: 10.3233/shti210185. PMID: 34042770.
Abstract
[Abstract] In recent years, microbiota has become an increasingly relevant factor for the understanding and potential treatment of diseases. In this work, based on the data reported by the largest study of microbioma in the world, a classification model has been developed based on Machine Learning (ML) capable of predicting the country of origin (United Kingdom vs United States) according to metagenomic data. The data were used for the training of a glmnet algorithm and a Random Forest algorithm. Both algorithms obtained similar results (0.698 and 0.672 in AUC, respectively). Furthermore, thanks to the application of a multivariate feature selection algorithm, eleven metagenomic genres highly correlated with the country of origin were obtained. An in-depth study of the variables used in each model is shown in the present work.
Keywords
Feature selection
Machine-learning
Metagenomics
 
Editor version
https://doi.org/10.3233/shti210185
Rights
Atribución-NoComercial 4.0 International (CC BY-NC 4.0)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback