Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Priorización de genes y búsqueda de dianas terapéuticas por medio de herramientas informáticas y técnicas de aprendizaje automatizado en cáncer de mama

Thumbnail
Ver/abrir
LopezCortes_Andres_TD_2021.pdf (41.61Mb)
Use este enlace para citar
http://hdl.handle.net/2183/28065
Coleccións
  • Teses de doutoramento [2232]
Metadatos
Mostrar o rexistro completo do ítem
Título
Priorización de genes y búsqueda de dianas terapéuticas por medio de herramientas informáticas y técnicas de aprendizaje automatizado en cáncer de mama
Autor(es)
López-Cortés, Andrés
Director(es)
Barigye, Stephen Jones
González-Díaz, Humberto
Pazos, A.
Data
2021
Resumo
[Resumen] El cáncer de mama (CM) es la principal causa de muerte relacionada a neoplasias en mujeres y es el tipo de cáncer más diagnosticado a nivel mundial. CM es una enfermedad heterogénea en donde están envueltos diversos factores como alteraciones genómicas, desregulación de la expresión de proteínas, alteración de cascadas genéticas, desregulación hormonal, determinantes ambientales y etnicidad. A pesar de los grandes avances tecnológicos y científicos en los últimos años, la comprensión de los procesos moleculares, la identificación de nuevas dianas terapéuticas y la predicción de proteínas envueltas inmunoterapia, metástasis, y unión al ARN es indispensable para el desarrollo de fármacos y la aplicación de la medicina de precisión en la práctica clínica. La tesis aquí propuesta plantea el desarrollo de una estrategia consenso altamente eficiente en el reconocimiento de genes y proteínas asociadas al CM; la validación oncológica de dichos genes y proteínas priorizadas mediante la estrategia OncoOmics que consistió en el análisis de bases de datos experimentales de alta relevancia a nivel mundial; la identificación de mutaciones oncogénicas y fármacos indispensables para el desarrollo y aplicación de la medicina de precisión; y la predicción de proteínas de CM asociadas a inmunoterapia, metástasis y unión al ARN mediante diversas herramientas informáticas y métodos de inteligencia artificial. Todos los resultados se publicaron en revistas internacionales de importante factor de impacto.
 
Abstract] Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. BC is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Despite the technological and scientific advances in recent years, an understanding of molecular processes, the identification of new therapeutic targets and the prediction of proteins involved in immunotherapy, metastasis, and RNA binding is essential for drug development and application of precision medicine in clinical practice. The current thesis proposes the development of a high efficient consensus strategy in the recognition of genes and proteins associated with BC; the oncological validation of these prioritized genes and proteins using the OncoOmics strategy, which consisted of the analysis of outstanding experimental databases; the identification of oncogenic mutations and essential drugs for the development and application of precision medicine; and the prediction of BC proteins associated with immunotherapy, metastasis and RNA-binding using bioinformatics tools and artificial intelligence methods. All results were published in international journals with a significant impact factor.
 
[Resumo] O cancro de mama (CM) é a principal causa de morte relacionada con enfermidades malignas en mulleres e é o tipo de cancro máis diagnosticado a nivel mundial. A CM é unha enfermidade heteroxénea onde interveñen varios factores, como alteracións xenómicas, desregulación da expresión proteica, alteración de cascadas xenéticas, desregulación hormonal, determinantes ambientais e etnia. A pesar dos grandes avances tecnolóxicos e científicos dos últimos anos, a comprensión dos procesos moleculares, a identificación de novas dianas terapéuticas e a predición de proteínas implicadas na inmunoterapia, metástase e unión ao ARN é fundamental para o desenvolvemento de fármacos e aplicación da medicina de precisión na práctica clínica. Esta tese propón o desenvolvemento dunha estratexia de consenso altamente eficiente no recoñecemento de xenes e proteínas asociadas a CM; a validación oncolóxica destes xenes e proteínas prioritarias mediante a estratexia OncoOmics, que consistiu na análise de bases de datos experimentais altamente relevantes en todo o mundo; a identificación de mutacións oncogénicas e fármacos esenciais para o desenvolvemento e aplicación da medicina de precisión; e a predición de proteínas CM asociadas á inmunoterapia, metástase e unión ao ARN usando diversas ferramentas informáticas e métodos de intelixencia artificial. Todos os resultados publicáronse en revistas internacionais cun importante factor de impacto.
 
Palabras chave
Medicina-Informática
Mamas-Cáncer-Investigación-Galicia
Tratamiento de imágenes en medicina
 
Descrición
Tese por compendio de publicacións
Dereitos
Os titulares dos dereitos de propiedade intelectual autorizan a visualización do contido desta tese a través de Internet, así como a súa reproducción, gravación en soporte informático ou impresión para o seu uso privado e/ou con fins de estudo e de investigación. En nengún caso se permite o uso lucrativo deste documento. Estos dereitos afectan tanto ó resumo da tese como o seu contido Los titulares de los derechos de propiedad intelectual autorizan la visualización del contenido de esta tesis a través de Internet, así como su repoducción, grabación en soporte informático o impresión para su uso privado o con fines de investigación. En ningún caso se permite el uso lucrativo de este documento. Estos derechos afectan tanto al resumen de la tesis como a su contenido

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións