Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Traballos académicos (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Traballos académicos (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sistema de recomendación basado en comentarios textuales

Thumbnail
Ver/abrir
P.Rivero_Vilariño_2020_Sistema_de_recomendación.pdf (4.281Mb)
Use este enlace para citar
http://hdl.handle.net/2183/27335
Coleccións
  • Traballos académicos (FIC) [716]
Metadatos
Mostrar o rexistro completo do ítem
Título
Sistema de recomendación basado en comentarios textuales
Autor(es)
Rivero Vilariño, Pedro
Director(es)
Alonso Betanzos, María Amparo
Bolón Canedo, Verónica
Gómez Rodríguez, Carlos
Data
2020-09-07
Centro/Dpto/Entidade
Enxeñaría informática, Grao en
Descrición
Traballo fin de grao (UDC.FIC). Enxeñaría informática. Curso 2019/2020
Resumo
[Resumen] El proyecto descrito en este documento tiene como objetivo construir un comentario de texto personalizado de cada usuario de un Sistema de Recomendación (RS, por sus siglas en inglés) hacia un producto o servicio que este no haya utilizado, basándose en el total de comentarios textuales de los distintos usuarios utilizados en el RS. El fin de un RS es sugerir a los usuarios nuevos productos o servicios que puede que no conozcan aún, basados en las preferencias de usuarios con características similares. Desde un punto de vista económico, estos RS son de vital importancia, ya que muchas de las mayores compañías del mundo por capitalización de mercado (como Google, Amazon o Facebook) están substancialmente basadas en plataformas que recomiendan productos a sus usuarios. Habitualmente, los usuarios de un producto o servicio dejan patente su opinión mediante un sistema de puntuación numérico, un comentario en lenguaje natural y, opcionalmente, una serie de fotos. Este proyecto se centra en utilizar los comentarios como forma de evaluar la opinión del usuario y extraer información sobre sus gustos para poder ofrecer recomendaciones más personalizadas. En concreto, el objetivo de este proyecto será evaluar las opiniones de usuarios de TripAdvisor sobre hoteles para tratar de predecir la reacción de un usuario frente a un hotel determinado que este no haya visitado aún. Para ello, primeramente será necesario obtener un conjunto de datos con opiniones reales de usuarios de TripAdvisor, para posteriormente preprocesar los comentarios para poder trabajar con ellos (eliminación de palabras vacías, puntuación, etc.). Seguidamente se obtendrá una representación densa del lenguaje para poder interpretar los comentarios y se usará una aproximación probabilística junto con Deep Learning para poder predecir las reseñas de usuario/hotel. Por último se implementarán distintas métricas para evaluar los comentarios obtenidos.
 
[Abstract] The project described in this document has the objective of building a personalized textual comment for each user in a Recommender System (RS) to a product or service that the user hasn’t used in the past, based on every users’ textual comments used in the RS. The end goal of a RS is to suggest new products or services to users that they may not know about, based on the preferences of users with a similar profile. From an economic point of view, RS are of vital importance, since many of the world’s biggest companies by revenue (like Google, Amazon or Facebook) are substantially based on platforms that recommend products to their users. Users of a product or service usually show their opinion by means of numeric-based ratings, a natural language comment and, optionally, a series of photos. This project is centered around the idea of exploiting the comments as a mean of evaluating user opinions and extracting information about their preferences with the end goal of making personalized decisions. Specifically, the objective of this project will be to evaluate TripAdvisor’s user’s opinions on hotels to try and predict the reaction of a user when presented with an hotel he/she has not visited yet. To bring about this project, it will be necessary to obtain a dataset with real reviews of TripAdvisor’s users, later preprocess the comments (removal of stop-words, punctuation etc.). Next, a dense representation of the language of the comments will be obtained so as to be able to interpret them and a probabilistic approach will be used in conjunction with Deep Learning to predict the reviews. Lastly, different metrics will be implemented to assess the quality of the obtained reviews.
 
Palabras chave
Sistema de Recomendación
Reseña
Lenguaje natural
Modelado de lenguaje
Aprendizaje profundo
Recommender system
Language modeling
Deep learning
Review
Natural language
 

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións