Mostrar o rexistro simple do ítem
Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images
dc.contributor.author | Vidal, Plácido | |
dc.contributor.author | Moura, Joaquim de | |
dc.contributor.author | Díaz González, Macarena | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2020-11-26T19:02:37Z | |
dc.date.available | 2020-11-26T19:02:37Z | |
dc.date.issued | 2020-10-31 | |
dc.identifier.citation | Vidal, P.L.; de Moura, J.; Díaz, M.; Novo, J.; Ortega, M. Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images. Appl. Sci. 2020, 10, 7718. https://doi.org/10.3390/app10217718 | es_ES |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | http://hdl.handle.net/2183/26813 | |
dc.description.abstract | [Abstract] Diabetic Retinopathy and Diabetic Macular Edema (DME) represent one of the main causes of blindness in developed countries. They are characterized by fluid deposits in the retinal layers, causing a progressive vision loss over the time. The clinical literature defines three DME types according to the texture and disposition of the fluid accumulations: Cystoid Macular Edema (CME), Diffuse Retinal Thickening (DRT) and Serous Retinal Detachment (SRD). Detecting each one is essential as, depending on their presence, the expert will decide on the adequate treatment of the pathology. In this work, we propose a robust detection and visualization methodology based on the analysis of independent image regions. We study a complete and heterogeneous library of 375 texture and intensity features in a dataset of 356 labeled images from two of the most used capture devices in the clinical domain: a CIRRUSTM HD-OCT 500 Carl Zeiss Meditec and 179 OCT images from a modular HRA + OCT SPECTRALIS® from Heidelberg Engineering, Inc. We extracted 33,810 samples for each type of DME for the feature analysis and incremental training of four different classifier paradigms. This way, we achieved an 84.04% average accuracy for CME, 78.44% average accuracy for DRT and 95.40% average accuracy for SRD. These models are used to generate an intuitive visualization of the fluid regions. We use an image sampling and voting strategy, resulting in a system capable of detecting and characterizing the three types of DME presenting them in an intuitive and repeatable way. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.description.sponsorship | This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia, Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project, Ayudas para la formación de profesorado universitario (FPU), grant ref. FPU18/02271; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). | |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.uri | https://doi.org/10.3390/app10217718 | es_ES |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | es_ES |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Macular edema | es_ES |
dc.subject | Intraretrinal fluid accumulations | es_ES |
dc.subject | Feature selection | es_ES |
dc.subject | Medical image characterization | es_ES |
dc.subject | Optical coherence tomography | es_ES |
dc.title | Diabetic Macular Edema Characterization and Visualization Using Optical Coherence Tomography Images | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Applied Sciences | es_ES |
UDC.volume | 10 | es_ES |
UDC.issue | 21 | es_ES |
UDC.startPage | 7718 | es_ES |
dc.identifier.doi | 10.3390/app10217718 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Visión Artificial e Recoñecemento de Patróns (VARPA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/DTS18%2F00136/ES/Plataforma online para prevención y detección precoz de enfermedad vascular mediante análisis automatizado de información e imagen clínica | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICA | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/FPU18%2F02271/ES/ |
Ficheiros no ítem
Este ítem aparece na(s) seguinte(s) colección(s)
-
Investigación (FIC) [1654]