Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Recommender System Based on Cohorts’ Similarity

Thumbnail
View/Open
Pazos_Alejandro_2020_Recommender_System_Based_Cohorts_Similarity.pdf (142.2Kb)
Use this link to cite
http://hdl.handle.net/2183/25936
Atribución-NoComercial 4.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial 4.0 España
Collections
  • GI-RNASA - Artigos [163]
Metadata
Show full item record
Title
A Recommender System Based on Cohorts’ Similarity
Author(s)
Almeida, João Rafael
Monteiro, Eriksson
Silva, Luís Bastião
Pazos, A.
Oliveira, José Luís
Date
2020-06-16
Citation
Almeida JR, Monteiro E, Silva LB, Pazos A, Oliveira JL. A Recommender System Based on Cohorts’ Similarity: 2020; 270:1183-1184
Abstract
[Abstract] Aiming to better understand the genetic and environmental associations of Alzheimer's disease, many clinical trials and scientific studies have been conducted. However, these studies are often based on a small number of participants. To address this limitation, there is an increasing demand of multi-cohorts studies, which can provide higher statistical power and clinical evidence. However, this data integration implies dealing with the diversity of cohorts structures and the wide variability of concepts. Moreover, discovering similar cohorts to extend a running study is typically a demanding task. In this paper, we present a recommendation system to allow finding similar cohorts based on profile interests. The method uses collaborative filtering mixed with context-based retrieval techniques to find relevant cohorts on scientific literature about Alzheimer's diseases. The method was validated in a set of 62 cohorts.
Keywords
Alzheimer cohorts
Cohort catalogue
Recommendation systems
 
Editor version
https://doi.org/10.3233/SHTI200353
Rights
Atribución-NoComercial 4.0 España
ISSN
18798365

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback