Paired and Unpaired Deep Generative Models on Multimodal Retinal Image Reconstruction

Use este enlace para citar
http://hdl.handle.net/2183/23906Coleccións
- Investigación (FIC) [1635]
Metadatos
Mostrar o rexistro completo do ítemTítulo
Paired and Unpaired Deep Generative Models on Multimodal Retinal Image ReconstructionData
2019-08-07Cita bibliográfica
HERVELLA, Álvaro, et al. Paired and Unpaired Deep Generative Models on Multimodal Retinal Image Reconstruction. En Multidisciplinary Digital Publishing Institute Proceedings. 2019. p. 45.
Resumo
[Abstract] This work explores the use of paired and unpaired data for training deep neural networks in the multimodal reconstruction of retinal images. Particularly, we focus on the reconstruction of fluorescein angiography from retinography, which are two complementary representations of the eye fundus. The performed experiments allow to compare the paired and unpaired alternatives.
Palabras chave
Deep learning
Generative adversarial network
Eye fundus
Multimodal
Generative adversarial network
Eye fundus
Multimodal
Versión do editor
ISSN
2504-3900