Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs
View/ Open
Use this link to cite
http://hdl.handle.net/2183/23895Collections
Metadata
Show full item recordTitle
Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEsDate
2019-08-06Citation
GOBET, Emmanuel; SALAS, José Germán López; VÁZQUEZ, Carlos. Quasi-Regression Monte-Carlo Method for Semi-Linear PDEs and BSDEs. En Multidisciplinary Digital Publishing Institute Proceedings. 2019. p. 44.
Abstract
[Abstract] In this work we design a novel and efficient quasi-regression Monte Carlo algorithm in order to approximate the solution of discrete time backward stochastic differential equations (BSDEs), and we analyze the convergence of the proposed method. With the challenge of tackling problems in high dimensions we propose suitable projections of the solution and efficient parallelizations of the algorithm taking advantage of powerful many core processors such as graphics processing units (GPUs).
Keywords
BSDEs
Semi-linear PDEs
Parallel computing
GPUs
CUDA
Semi-linear PDEs
Parallel computing
GPUs
CUDA
Editor version
Rights
Atribución 4.0 Internacional
ISSN
2504-3900