Mostrar o rexistro simple do ítem

dc.contributor.authorGonzález-Durruthy, Michael
dc.contributor.authorAlberici, Luciane C.
dc.contributor.authorCurti, Carlos
dc.contributor.authorNaal, Zeki
dc.contributor.authorAtique-Sawazaki, David T.
dc.contributor.authorVázquez-Naya, José
dc.contributor.authorGonzález-Díaz, Humberto
dc.contributor.authorMunteanu, Cristian-Robert
dc.date.accessioned2019-06-18T09:57:08Z
dc.date.available2019-06-18T09:57:08Z
dc.date.issued2017-04-17
dc.identifier.citationGonzález-Durruthy M, Alberici LC, Curti C, et al. Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants. J Chem Inf Model. 2017; 57(5): 1029-1044es_ES
dc.identifier.issn1549-9596
dc.identifier.urihttp://hdl.handle.net/2183/23241
dc.description.abstract[Abstract] The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated and carboxylated). Respiratory functional assays showed that the information on the CNT Raman spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box–Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs methodology is employed to test four regression methods such as multiple linear regression (LM), partial least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R2 of 0.998–0.999 and RMSE of 0.0068–0.0133 (training and test subsets). This work is aimed at demonstrating that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective chemoinformatics tool for nanorisk assessmentes_ES
dc.description.sponsorshipXunta de Galicia; GRC2014/049es_ES
dc.description.sponsorshipXunta de Galicia; R2014/039es_ES
dc.language.isoenges_ES
dc.publisherACS Publicationses_ES
dc.relation.urihttps://doi.org/10.1021/acs.jcim.6b00458es_ES
dc.rightsThis document is the unedited author`s version of a submitted work that was subsequently accepted for publication in Journal of Chemical Information and Modeling, copyright @American Chemical Society after peer review. To access the final edited and published work, see ACS Publications web page.es_ES
dc.titleExperimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariantses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleJournal of Chemical Information ans Modelinges_ES
UDC.volume57es_ES
UDC.issue5es_ES
UDC.startPage1029es_ES
UDC.endPage1044es_ES


Ficheiros no ítem

Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem