Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Congresos, conferencias, etc.
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Congresos, conferencias, etc.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A generalized linear model for cardiovascular complications prediction in PD patients

Thumbnail
View/Open
FdezLozno_Gnrlized.pdf (207.2Kb)
Use this link to cite
http://hdl.handle.net/2183/21591
Collections
  • GI-RNASA - Congresos, conferencias, etc. [34]
Metadata
Show full item record
Title
A generalized linear model for cardiovascular complications prediction in PD patients
Author(s)
Fernández-Lozano, Carlos
Alonso Valente, Rafael
Fidalgo Díaz, Manuel
Pazos, A.
Date
2018
Citation
Fernández-Lozano C, Alonso Valente R, Fidalgo Díaz M, Pazos A. A generalized linear model for cardiovascular complications prediction in PD patients. proceedings of the First International Conference on Data Science, E-learning and Information Systems; 2018 Oct 1-2; Madrid, Spain. New York, NY: Association for Computer Machinery; 2018
Abstract
[Abstract] This study was conducted using machine learning models to identify patient non-invasive information for cardiovascular complications prediction in peritoneal dialysis patients. Nowadays is well known that cardiovascular diseases are the key to mortality in patients undergoing peritoneal dialysis as the risk of cardiovascular disease increases with the progression of renal failure. Primary aim is to establish variables most associated with cardiovascular complications. To achieve this goal four different machine learning techniques were used. We found that the best classification algorithm was a Generalized Linear Model, which achieved AUC values above 96% using a small subset of the original variables following a feature selection approach. Our approach allows us to increase the interpretability of the combinations of traditional factors, advanced chronic kidney disease factors and peritoneal dialysis factors all related with cardiovascular risk profile. The final model is based primarily in the traditional factors.
Keywords
Peritoneal dialysis
Machine learning
Cardiovascular risk prediction
Feature selection
Gimnet
 
Editor version
https://doi.org/10.1145/3279996.3280039
ISBN
978-1-4503-6536-9

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback