Mostrar o rexistro simple do ítem

dc.contributor.authorMantzouki, Evanthia
dc.contributor.authorDelgado Martín, Jordi
dc.contributor.authorGarcía, David
dc.contributor.authorCereijo, Jose Luís
dc.contributor.authorCarballeira, Rafael
dc.contributor.authorIbelings, Bas W.
dc.date.accessioned2018-09-28T11:44:29Z
dc.date.available2018-09-28T11:44:29Z
dc.date.issued2018-04-13
dc.identifier.citationMantzouki, E.; Lürling, M.; Fastner, J.; de Senerpont Domis, L.; Wilk-Woźniak, E.; Koreivienė, J.; Seelen, L.; Teurlincx, S.; Verstijnen, Y.; Krztoń, W.; Walusiak, E.; Karosienė, J.; Kasperovičienė, J.; Savadova, K.; Vitonytė, I.; Cillero-Castro, C.; Budzyńska, A.; Goldyn, R.; Kozak, A.; Rosińska, J.; Szeląg-Wasielewska, E.; Domek, P.; Jakubowska-Krepska, N.; Kwasizur, K.; Messyasz, B.; Pełechata, A.; Pełechaty, M.; Kokocinski, M.; García-Murcia, A.; Real, M.; Romans, E.; Noguero-Ribes, J.; Duque, D.P.; Fernández-Morán, E.; Karakaya, N.; Häggqvist, K.; Demir, N.; Beklioğlu, M.; Filiz, N.; Levi, E.E.; Iskin, U.; Bezirci, G.; Tavşanoğlu, Ü.N.; Özhan, K.; Gkelis, S.; Panou, M.; Fakioglu, Ö.; Avagianos, C.; Kaloudis, T.; Çelik, K.; Yilmaz, M.; Marcé, R.; Catalán, N.; Bravo, A.G.; Buck, M.; Colom-Montero, W.; Mustonen, K.; Pierson, D.; Yang, Y.; Raposeiro, P.M.; Gonçalves, V.; Antoniou, M.G.; Tsiarta, N.; McCarthy, V.; Perello, V.C.; Feldmann, T.; Laas, A.; Panksep, K.; Tuvikene, L.; Gagala, I.; Mankiewicz-Boczek, J.; Yağcı, M.A.; Çınar, Ş.; Çapkın, K.; Yağcı, A.; Cesur, M.; Bilgin, F.; Bulut, C.; Uysal, R.; Obertegger, U.; Boscaini, A.; Flaim, G.; Salmaso, N.; Cerasino, L.; Richardson, J.; Visser, P.M.; Verspagen, J.M.H.; Karan, T.; Soylu, E.N.; Maraşlıoğlu, F.; Napiórkowska-Krzebietke, A.; Ochocka, A.; Pasztaleniec, A.; Antão-Geraldes, A.M.; Vasconcelos, V.; Morais, J.; Vale, M.; Köker, L.; Akçaalan, R.; Albay, M.; Špoljarić Maronić, D.; Stević, F.; Žuna Pfeiffer, T.; Fonvielle, J.; Straile, D.; Rothhaupt, K.-O.; Hansson, L.-A.; Urrutia-Cordero, P.; Bláha, L.; Geriš, R.; Fránková, M.; Koçer, M.A.T.; Alp, M.T.; Remec-Rekar, S.; Elersek, T.; Triantis, T.; Zervou, S.-K.; Hiskia, A.; Haande, S.; Skjelbred, B.; Madrecka, B.; Nemova, H.; Drastichova, I.; Chomova, L.; Edwards, C.; Sevindik, T.O.; Tunca, H.; Önem, B.; Aleksovski, B.; Krstić, S.; Vucelić, I.B.; Nawrocka, L.; Salmi, P.; Machado-Vieira, D.; de Oliveira, A.G.; Delgado-Martín, J.; García, D.; Cereijo, J.L.; Gomà, J.; Trapote, M.C.; Vegas-Vilarrúbia, T.; Obrador, B.; Grabowska, M.; Karpowicz, M.; Chmura, D.; Úbeda, B.; Gálvez, J.Á.; Özen, A.; Christoffersen, K.S.; Warming, T.P.; Kobos, J.; Mazur-Marzec, H.; Pérez-Martínez, C.; Ramos-Rodríguez, E.; Arvola, L.; Alcaraz-Párraga, P.; Toporowska, M.; Pawlik-Skowronska, B.; Niedźwiecki, M.; Pęczuła, W.; Leira, M.; Hernández, A.; Moreno-Ostos, E.; Blanco, J.M.; Rodríguez, V.; Montes-Pérez, J.J.; Palomino, R.L.; Rodríguez-Pérez, E.; Carballeira, R.; Camacho, A.; Picazo, A.; Rochera, C.; Santamans, A.C.; Ferriol, C.; Romo, S.; Soria, J.M.; Dunalska, J.; Sieńska, J.; Szymański, D.; Kruk, M.; Kostrzewska-Szlakowska, I.; Jasser, I.; Žutinić, P.; Gligora Udovič, M.; Plenković-Moraj, A.; Frąk, M.; Bańkowska-Sobczak, A.; Wasilewicz, M.; Özkan, K.; Maliaka, V.; Kangro, K.; Grossart, H.-P.; Paerl, H.W.; Carey, C.C.; Ibelings, B.W. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. Toxins 2018, 10, 156.es_ES
dc.identifier.issn2072-6651
dc.identifier.urihttp://hdl.handle.net/2183/21085
dc.description.abstract[Abstract] Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.urihttps://doi.org/10.3390/toxins10040156es_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectMicrocystines_ES
dc.subjectAnatoxines_ES
dc.subjectCylindrospermopsines_ES
dc.subjectTemperaturees_ES
dc.subjectDirect effectses_ES
dc.subjectIndirect effectses_ES
dc.subjectSpatial distributiones_ES
dc.subjectEuropean Multi Lake Surveyes_ES
dc.titleTemperature effects explain continental scale distribution of cyanobacterial toxinses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleToxinses_ES
UDC.volume10es_ES
UDC.issue4es_ES
UDC.startPage156es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem