Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The iOSC3 system: using ontologies and SWRL rules for intelligent supervision and care of patients with acute cardiac disorders

Thumbnail
View/Open
Martinez_iosc3.pdf (6.731Mb)
Use this link to cite
http://hdl.handle.net/2183/18460
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • GI-RNASA - Artigos [164]
Metadata
Show full item record
Title
The iOSC3 system: using ontologies and SWRL rules for intelligent supervision and care of patients with acute cardiac disorders
Author(s)
Martínez-Romero, Marcos
Vázquez-Naya, José
Pereira-Loureiro, Javier
Pereira, Miguel
Pazos, A.
Baños, Alejandro
Date
2013
Citation
Martínez-Romero M, Vázquez-Naya JM, PereiraJ, Pereira M, Pazos A, Baños G. The iOSC3 system: using ontologies and SWRL rules for intelligent supervision and care of patients with acute cardiac disorders. Comput Math Methods Med [Internet]. 2013 [acceso 2017 Abr 28]; 2013:650671. Disponible en: https://www.hindawi.com/journals/cmmm/2013/650671/
Abstract
[Abstract] Physicians in the Intensive Care Unit (ICU) are specially trained to deal constantly with very large and complex quantities of clinical data and make quick decisions as they face complications. However, the amount of information generated and the way the data are presented may overload the cognitive skills of even experienced professionals and lead to inaccurate or erroneous actions that put patients’ lives at risk. In this paper, we present the design, development, and validation of iOSC3, an ontology-based system for intelligent supervision and treatment of critical patients with acute cardiac disorders. The system analyzes the patient’s condition and provides a recommendation about the treatment that should be administered to achieve the fastest possible recovery. If the recommendation is accepted by the doctor, the system automatically modifies the quantity of drugs that are being delivered to the patient. The knowledge base is constituted by an OWL ontology and a set of SWRL rules that represent the expert’s knowledge. iOSC3 has been developed in collaboration with experts from the Cardiac Intensive Care Unit (CICU) of the Meixoeiro Hospital, one of the most significant hospitals in the northwest region of Spain.
Editor version
http://dx.doi.org/10.1155/2013/650671
Rights
Atribución 3.0 España
ISSN
1748-6718

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback