Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

MIANN models of networks of biochemical reactions, ecosystems, and U.S. Supreme Court with Balaban-Markov indices

Thumbnail
Ver/abrir
Duardo_MIANN.pdf (623.3Kb)
Use este enlace para citar
http://hdl.handle.net/2183/17645
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
MIANN models of networks of biochemical reactions, ecosystems, and U.S. Supreme Court with Balaban-Markov indices
Autor(es)
Duardo-Sánchez, Aliuska
González-Díaz, Humberto
Pazos, A.
Data
2015
Cita bibliográfica
Duardo-Sánchez A, González-Díaz H, Pazos A. MIANN models of networks of biochemical reactions, ecosystems, and U.S. Supreme Court with Balaban-Markov indices. Curr Bioinform. 2015;10(5):658-671
Resumo
[Abstract] We can use Artificial Neural Networks (ANNs) and graph Topological Indices (TIs) to seek structure-property relationship. Balabans’ J index is one of the classic TIs for chemo-informatics studies. We used here Markov chains to generalize the J index and apply it to bioinformatics, systems biology, and social sciences. We seek new ANN models to show the discrimination power of the new indices at node level in three proof-of-concept experiments. First, we calculated more than 1,000,000 values of the new Balaban-Markov centralities Jk(i) and other indices for all nodes in >100 complex networks. In the three experiments, we found new MIANN models with >80% of Specificity (Sp) and Sensitivity (Sn) in train and validation series for Metabolic Reactions of Networks (MRNs) for 42 organisms (bacteria, yeast, nematode and plants), 73 Biological Interaction Webs or Networks (BINs), and 43 sub-networks of U.S. Supreme court citations in different decades from 1791 to 2005. This work may open a new route for the application of TIs to unravel hidden structure-property relationships in complex bio-molecular, ecological, and social networks.
Palabras chave
Artificial neural networks
Markov chains
U.S. supreme court
Complex networks
Ecosystem
Legal and social networks
Metabolomics
 
Versión do editor
http://dx.doi.org/10.2174/1574893610666151008012752
Dereitos
The published manuscript is avaliable at EurekaSelect
ISSN
1574-8936

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións