Browsing by Author "Paramá, José R."
Now showing items 1-15 of 15
-
3DGraCT: A Grammar-Based Compressed Representation of 3D Trajectories
Brisaboa, Nieves R.; Gómez-Brandón, Adrián; Martínez-Prieto, Miguel A.; Paramá, José R. (Springer, 2018)[Abstract]: Much research has been published about trajectory management on the ground or at the sea, but compression or indexing of flight trajectories have usually been less explored. However, air traffic management is ... -
A New Method to Index and Store Spatio-Temporal Data
Bernardo, Guillermo de; Casares, Ramón; Gómez-Brandón, Adrián; Paramá, José R. (2016-11-16)[Abstract] We propose a data structure that stores, in a compressed way, object trajectories, which at the same time, allow to efficiently response queries without the need to decompress the data. We use a data structure, ... -
An index for moving objects with constant-time access to their compressed trajectories
Brisaboa, Nieves R.; Gagie, Travis; Gómez-Brandón, Adrián; Navarro, Gonzalo; Paramá, José R. (Taylor & Francis, 2021)[Abstract]: As the number of vehicles and devices equipped with GPS technology has grown explosively, an urgent need has arisen for time- and space-efficient data structures to represent their trajectories. The most commonly ... -
Chase of datalog programs and its application to solve the functional dependencies implication problem
Paramá, José R. (2001)[Resumen]Esta tesis presenta resultados en dos áreas principales. Por un lado se presentan resultados en el área de optimización de consultas recursivas (programas datalog recursivos lineales) en sistemas de gestión de ... -
Compact and indexed representation for LiDAR point clouds
Ladra, Susana; Rodríguez Luaces, Miguel; Paramá, José R.; Silva-Coira, Fernando (Taylor & Francis, 2022)[Abstract]: LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them, and adding additional attributes to each point such as color, position, time, etc. LiDAR datasets are usually large, ... -
Efficient Processing of Raster and Vector Data
Silva-Coira, Fernando; Paramá, José R.; Ladra, Susana; López, Juan R.; Gutiérrez, Gilberto (Public Library of Science, 2020-01-10)[Abstract] In this work, we propose a framework to store and manage spatial data, which includes new efficient algorithms to perform operations accepting as input a raster dataset and a vector dataset. More concretely, we ... -
GraCT: A Grammar Based Compressed Representation of Trajectories
Brisaboa, Nieves R.; Gómez-Brandón, Adrián; Navarro, Gonzalo; Paramá, José R. (Springer, 2016-09-21)[Abstract] We present a compressed data structure to store free trajectories of moving objects (ships over the sea, for example) allowing spatio-temporal queries. Our method, GraCT, uses a k2k2 -tree to store the absolute ... -
GraCT: A Grammar-based Compressed Index for Trajectory Data
Brisaboa, Nieves R.; Gómez-Brandón, Adrián; Navarro, Gonzalo; Paramá, José R. (Elsevier Ltd, 2019)[Abstract]: We introduce a compressed data structure for the storage of free trajectories of moving objects that efficiently supports various spatio-temporal queries. Our structure, dubbed GraCT, stores the absolute positions ... -
Indexing and Retrieval of Scores by Humming based on Extracted Features
Romero-Velo, Hilda; Ladra, Susana; Paramá, José R.; Silva-Coira, Fernando (Universidade da Coruña, Servizo de Publicacións, 2023)[Abstract] In order to be able to conduct searches over large collections of music scores with queries provided in audio format, this article considers recent literature in the field and proposes an implementation to ... -
Lossless Compression of Industrial Time Series With Direct Access
Gómez-Brandón, Adrián; Paramá, José R.; Villalobos, Kevin; Illarramendi, Arantza; Brisaboa, Nieves R. (Elsevier, 2021)[Abstract] The new opportunities generated by the data-driven economy in the manufacturing industry have causedmany companies opt for it. However, the size of time series data that need to be captured creates theproblem ... -
Map algebra on raster datasets represented by compact data structures
Silva-Coira, Fernando; Paramá, José R.; Ladra, Susana (John Wiley and Sons, 2023-06)[Abstract]: The increase in the size of data repositories has forced the design of new computing paradigms to be able to process large volumes of data in a reasonable amount of time. One of them is in-memory computing, ... -
Proyecto COVIDBENS. Seguimiento de la pandemia de COVID-19 en aguas residuales del área metropolitana de A Coruña
Trigo-Tasende, Noelia; Vaamonde, Manuel; Paramá, José R.; Tarrío-Saavedra, Javier; López-de-Ulibarri, Ignacio; Vallejo, J.A.; Ladra, Susana; Cao, Ricardo; Poza, Margarita (Sociedad Española de Sanidad Ambiental, 2022-05-18)[Resumen]: El virus SARS-CoV-2 está compuesto por una nucleocápside que engloba su material genético y la proteína N, rodeada por una membrana bilipídica, que contiene las proteínas M y E, y una corona de espinas, que ... -
Scalable processing and autocovariance computation of big functional data
Brisaboa, Nieves R.; Cao, Ricardo; Paramá, José R.; Silva-Coira, Fernando (John Wiley & Sons, 2018)[Abstract]: This paper presents 2 main contributions. The first is a compact representation of huge sets of functional data or trajectories of continuous-time stochastic processes, which allows keeping the data always ... -
Space-Efficient Representations of Raster Time Series
Silva-Coira, Fernando; Paramá, José R.; Bernardo, Guillermo de; Seco, Diego (Elsevier, 2021)[Abstract] Raster time series, a.k.a. temporal rasters, are collections of rasters covering the same region at consecutive timestamps. These data have been used in many different applications ranging from weather forecast ... -
Towards a Compact Representation of Temporal Rasters
Cerdeira-Pena, Ana; Bernardo, Guillermo de; Fariña, Antonio; Paramá, José R.; Silva-Coira, Fernando (Springer Nature, 2018-09)[Abstract]: Big research efforts have been devoted to efficiently manage spatio-temporal data. However, most works focused on vectorial data, and much less, on raster data. This work presents a new representation for raster ...