Mostrar el registro sencillo del ítem
CUDA acceleration of MI-based feature selection methods
dc.contributor.author | Beceiro, Bieito | |
dc.contributor.author | González-Domínguez, Jorge | |
dc.contributor.author | Morán-Fernández, Laura | |
dc.contributor.author | Bolón-Canedo, Verónica | |
dc.contributor.author | Touriño, Juan | |
dc.date.accessioned | 2024-04-30T16:01:12Z | |
dc.date.available | 2024-04-30T16:01:12Z | |
dc.date.issued | 2024-08 | |
dc.identifier.citation | Beceiro, B., González-Domínguez, J., Morán-Fernández, L., Bolón-Canedo, V., & Touriño, J. (2024). CUDA acceleration of MI-based feature selection methods. Journal of Parallel and Distributed Computing, 104901. https://doi.org/10.1016/j.jpdc.2024.104901 | es_ES |
dc.identifier.issn | 0743-7315 | |
dc.identifier.issn | 1096-0848 | |
dc.identifier.uri | http://hdl.handle.net/2183/36386 | |
dc.description.abstract | [Abstract]: Feature selection algorithms are necessary nowadays for machine learning as they are capable of removing irrelevant and redundant information to reduce the dimensionality of the data and improve the quality of subsequent analyses. The problem with current feature selection approaches is that they are computationally expensive when processing large datasets. This work presents parallel implementations for Nvidia GPUs of three highly-used feature selection methods based on the Mutual Information (MI) metric: mRMR, JMI and DISR. Publicly available code includes not only CUDA implementations of the general methods, but also an adaptation of them to work with low-precision fixed point in order to further increase their performance on GPUs. The experimental evaluation was carried out on two modern Nvidia GPUs (Turing T4 and Ampere A100) with highly satisfactory results, achieving speedups of up to 283x when compared to state-of-the-art C implementations. | es_ES |
dc.description.sponsorship | This work was supported by grants PID2019-104184RB-I00, PID- 2019-109238GB-C22, TED2021-130599A-I00 and PID2022-136435NB- I00, funded by MCIN/AEI/ 10.13039/501100011033 (TED2021 also funded by “NextGenerationEU”/PRTR and PID2022 by “ERDF A way of making Europe”, EU). Grant TSI-100925-2023-1, funded by Ministry for Digital Transformation and Civil Service. FPU predoctoral grant of Bieito Beceiro ref. FPU20/00997, funded by the Ministry of Sci- ence, Innovation and Universities. We gratefully thank the Galician Supercomputing Center (CESGA) for the access granted to its super- computing resources. Funding for open access charge: Universidade da Coruña/CISUG. | es_ES |
dc.description.sponsorship | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.jpdc.2024.104901 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Feature selection | es_ES |
dc.subject | Mutual information | es_ES |
dc.subject | Low precision | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | CUDA | es_ES |
dc.title | CUDA acceleration of MI-based feature selection methods | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Journal of Parallel and Distributed Computing | es_ES |
UDC.volume | 190 | es_ES |
UDC.startPage | 104901 | es_ES |
dc.identifier.doi | 10.1016/j.jpdc.2024.104901 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Enxeñaría de Computadores | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Arquitectura de Computadores (GAC) | es_ES |
UDC.grupoInv | Laboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104184RB-I00/ES/DESAFIOS ACTUALES EN HPC: ARQUITECTURAS, SOFTWARE Y APLICACIONES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109238GB-C22/ES/APRENDIZAJE AUTOMATICO ESCALABLE Y EXPLICABLE | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136435NB-I00/ES/ARQUITECTURAS, FRAMEWORKS Y APLICACIONES DE LA COMPUTACION DE ALTAS PRESTACIONES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/TED2021-130599A-I00/ES/ALGORITMOS DE SELECCIÓN DE CARACTERÍSTICAS VERDES Y RÁPIDOS. | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TSI-100925-2023-1/ES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/FPU20%2F00997/ES/ | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Investigación (FIC) [1678]