Paired and Unpaired Deep Generative Models on Multimodal Retinal Image Reconstruction

Use este enlace para citar
http://hdl.handle.net/2183/23906Colecciones
- Investigación (FIC) [1635]
Metadatos
Mostrar el registro completo del ítemTítulo
Paired and Unpaired Deep Generative Models on Multimodal Retinal Image ReconstructionFecha
2019-08-07Cita bibliográfica
HERVELLA, Álvaro, et al. Paired and Unpaired Deep Generative Models on Multimodal Retinal Image Reconstruction. En Multidisciplinary Digital Publishing Institute Proceedings. 2019. p. 45.
Resumen
[Abstract] This work explores the use of paired and unpaired data for training deep neural networks in the multimodal reconstruction of retinal images. Particularly, we focus on the reconstruction of fluorescein angiography from retinography, which are two complementary representations of the eye fundus. The performed experiments allow to compare the paired and unpaired alternatives.
Palabras clave
Deep learning
Generative adversarial network
Eye fundus
Multimodal
Generative adversarial network
Eye fundus
Multimodal
Versión del editor
ISSN
2504-3900