Mostrar o rexistro simple do ítem

dc.contributor.authorMorán-Fernández, Laura
dc.contributor.authorBolón-Canedo, Verónica
dc.contributor.authorAlonso-Betanzos, Amparo
dc.date.accessioned2018-10-08T16:35:32Z
dc.date.available2018-10-08T16:35:32Z
dc.date.issued2018-09-17
dc.identifier.citationMorán-Fernández, L.; Bolón-Canedo, V.; Alonso-Betanzos, A. Feature Selection with Limited Bit Depth Mutual Information for Embedded Systems. Proceedings 2018, 2, 1187.es_ES
dc.identifier.issn2504-3900
dc.identifier.urihttp://hdl.handle.net/2183/21121
dc.descriptionTrátase dun resumo estendido da ponencia
dc.description.abstract[Abstract] Data is growing at an unprecedented pace. With the variety, speed and volume of data flowing through networks and databases, newer approaches based on machine learning are required. But what is really big in Big Data? Should it depend on the numerical representation of the machine? Since portable embedded systems have been growing in importance, there is also increased interest in implementing machine learning algorithms with a limited number of bits. Not only learning, also feature selection, most of the times a mandatory preprocessing step in machine learning, is often constrained by the available computational resources. In this work, we consider mutual information—one of the most common measures of dependence used in feature selection algorithms—with reduced precision parameters.es_ES
dc.description.sponsorshipXunta de Galicia; GRC2014/035es_ES
dc.description.sponsorshipXunta de Galicia; ED431G/01es_ES
dc.language.isoenges_ES
dc.publisherMDPI AGes_ES
dc.relation.urihttps://doi.org/10.3390/proceedings2181187es_ES
dc.rightsAtribución 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFeature selectiones_ES
dc.subjectMutual informationes_ES
dc.subjectReduced precisiones_ES
dc.subjectEmbedded systemses_ES
dc.subjectBig Dataes_ES
dc.titleFeature Selection With Limited Bit Depth Mutual Information for Embedded Systemses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleProceedingses_ES
UDC.volume18es_ES
UDC.issue2es_ES
UDC.startPage1187es_ES
dc.identifier.doi10.3390/proceedings2181187
UDC.conferenceTitleProceedings XoveTIC Conference 2018es_ES
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvLaboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA)es_ES


Ficheiros no ítem

No Thumbnail [100%x150]
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem