Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feature Selection With Limited Bit Depth Mutual Information for Embedded Systems

Thumbnail
View/Open
Laura_Morán-Fernández_2018_Feature_Selection_with_Limited_Bit_Depth_Mutual_Information_for_Embedded_Systems.pdf (168.5Kb)
Use this link to cite
http://hdl.handle.net/2183/21121
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
Feature Selection With Limited Bit Depth Mutual Information for Embedded Systems
Author(s)
Morán-Fernández, Laura
Bolón-Canedo, Verónica
Alonso-Betanzos, Amparo
Date
2018-09-17
Citation
Morán-Fernández, L.; Bolón-Canedo, V.; Alonso-Betanzos, A. Feature Selection with Limited Bit Depth Mutual Information for Embedded Systems. Proceedings 2018, 2, 1187.
Abstract
[Abstract] Data is growing at an unprecedented pace. With the variety, speed and volume of data flowing through networks and databases, newer approaches based on machine learning are required. But what is really big in Big Data? Should it depend on the numerical representation of the machine? Since portable embedded systems have been growing in importance, there is also increased interest in implementing machine learning algorithms with a limited number of bits. Not only learning, also feature selection, most of the times a mandatory preprocessing step in machine learning, is often constrained by the available computational resources. In this work, we consider mutual information—one of the most common measures of dependence used in feature selection algorithms—with reduced precision parameters.
Keywords
Feature selection
Mutual information
Reduced precision
Embedded systems
Big Data
 
Description
Trátase dun resumo estendido da ponencia
Editor version
https://doi.org/10.3390/proceedings2181187
Rights
Atribución 4.0 Internacional
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback