Mostrar o rexistro simple do ítem

dc.contributor.authorRoca Sabio, Adrián
dc.contributor.authorRegueiro-Figueroa, Martín
dc.contributor.authorEsteban-Gómez, David
dc.contributor.authorBlas, Andrés de
dc.contributor.authorRodríguez-Blas, Teresa
dc.contributor.authorPlatas-Iglesias, Carlos
dc.date.accessioned2018-11-26T11:16:03Z
dc.date.available2018-11-26T11:16:03Z
dc.date.issued2012-11-01
dc.identifier.citationDensity Functional Dependence of Molecular Geometries in Lanthanide(III) Complexes Relevant to Bioanalytical and Biomedical Applications. Adrián Roca-Sabio, Martín Regueiro-Figueroa, David Esteban‐Gómez, Andrés de Blas, Teresa Rodríguez‐Blas, and Carlos Platas‐Iglesias. Computational and Theoretical Chemistry 2012 999, 93–104.es_ES
dc.identifier.issn2210-271X
dc.identifier.urihttp://hdl.handle.net/2183/21353
dc.description.abstract[Abstract] A set of 15 lanthanide-containing model systems was used to evaluate the performance of 15 commonly available density functionals (SVWN, SPL, BLYP, G96LYP, mPWLYP, B3LYP, BH&HLYP, B3PW91, BB95, mPWB95, TPSS, TPSSh, M06, CAM-B3LYP and wB97XD) in geometry determination, benchmarked against MP2 calculations. The best agreement between DFT optimized geometries and those obtained from MP2 calculations is provided by meta-GGA and hybrid meta-GGA functionals. The use of hybrid-GGA functionals such as BH&HLYP and B3PW91 also provide reasonably good results, while B3LYP provides an important overestimation of the metal–ligand bonds. The performance of different basis sets to describe the ligand(s) atoms, as well as the use of large-core (LC) RECPs and small-core (SC) RECPs, has been also assessed. Our calculations show that SCRECP calculations provide somewhat shorter GdIII–donor distances than the LCRECP approach, the average contraction of bond distances for the systems investigated amounting to 0.033 Å. However, geometry optimizations with the SCRECP (in combination with the mPWB95 functional and the 6-31G(d) basis set for the ligand atoms) take about 15 times longer than the LC counterparts, and about four times longer than MP2/LCRECP/6-31G(d) calculations. The 6-31G(d), 6-311G(d), 6-311G(d,p) or cc-pVDZ basis sets, in combination with LCRECPs, appear to offer an adequate balance between accuracy and computational cost for the description of molecular geometries of LnIII complexes. Electronic energies calculated with the the cc-pVxZ family (x = D-6) indicate a relative fast convergence to the complete basis set (CBS) limit with basis set size. The inclusion of bulk solvent effects (IEFPCM) was shown to provoke an important impact on the calculated geometries, particularly on the metal–nitrogen distances. Calculations performed on lanthanide complexes relevant for practical applications confirmed the important effect of the solvent on the calculated geometries.es_ES
dc.description.sponsorshipMinisterio de Educación y Ciencia; CTQ2009-10721es_ES
dc.description.sponsorshipXunta de Galicia; IN845B-2010/063es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.comptc.2012.08.020es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectLanthanideses_ES
dc.subjectDensity functional calculationses_ES
dc.subjectMRI contrast agentses_ES
dc.subjectSolvent effectses_ES
dc.subjectEffective core potentialses_ES
dc.subjectf-elementses_ES
dc.titleDensity functional dependence of molecular geometries in lanthanide(III) complexes relevant to bioanalytical and biomedical applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleComputational and Theoretical Chemistryes_ES
UDC.volume999es_ES
UDC.startPage93es_ES
UDC.endPage104es_ES


Ficheiros no ítem

Thumbnail
Thumbnail

Este ítem aparece na(s) seguinte(s) colección(s)

Mostrar o rexistro simple do ítem