Mostrar el registro sencillo del ítem

dc.contributor.authorEiras-Franco, Carlos
dc.contributor.authorMartínez Rego, David
dc.contributor.authorGuijarro-Berdiñas, Bertha
dc.contributor.authorAlonso-Betanzos, Amparo
dc.contributor.authorBahamonde, Antonio
dc.date.accessioned2024-02-01T16:54:42Z
dc.date.available2024-02-01T16:54:42Z
dc.date.issued2019
dc.identifier.citationEiras-Franco, C., Martínez-Rego, D., Guijarro-Berdiñas, B., Alonso-Betanzos, A., Bahamonde, A. (2019) ‘Large scale anomaly detection in mixed numerical and categorical input spaces’, Information Sciences, 487, pp. 115-127. doi:10.1016/j.ins.2019.03.013.es_ES
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/2183/35327
dc.description© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article Eiras-Franco, C., Martínez-Rego, D., Guijarro-Berdiñas, B., Alonso-Betanzos, A., Bahamonde, A. (2019) ‘Large scale anomaly detection in mixed numerical and categorical input spaces’ has been accepted for publication in: Information Sciences, 487, pp. 115-127. The Version of Record is available online at https://doi.org/10.1016/j.ins.2019.03.013.es_ES
dc.description.abstract[Abstract]: This work presents the ADMNC method, designed to tackle anomaly detection for large-scale problems with a mixture of categorical and numerical input variables. A flexible parametric probability measure is adjusted to input data, allowing low likelihood values to be tracked as anomalies. The main contribution of this method is that, to cope with the variable nature of the variables, we factorize the joint probability measure into two parts, namely, the marginal density of the continuous variables and the conditional probability of the categorical variables given the continuous part of the feature vector. The result is a model trained through a maximum likelihood objective function optimized with stochastic gradient descent that yields an effective and scalable algorithm. Compared with other well-known anomaly detection algorithms over several datasets, ADMNC is observed to both offer top level accuracy in datasets that are out of reach for the most effective existing methods and to scale up well to processing very large datasets. This makes it a powerful tool for solving a problem growing in popularity that currently lacks suitable scalable algorithms.es_ES
dc.description.sponsorshipThis research has been financially supported in part by the Spanish Ministerio de EconomÍa y Competitividad (research projects TIN 2015-65069-C2, both 1-R and 2-R), by the Xunta de Galicia (Grants GRC2014/035 and ED431G/01) and the European Union Regional Development Funds.es_ES
dc.description.sponsorshipXunta de Galicia; GRC2014/035es_ES
dc.description.sponsorshipXunta de Galicia; ED431G/01es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.ins.2019.03.013es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectAnomaly detectiones_ES
dc.subjectOutlier detectiones_ES
dc.subjectScalabilityes_ES
dc.subjectBig dataes_ES
dc.subjectMixed dataes_ES
dc.subjectSynthetic dataset generatores_ES
dc.titleLarge scale anomaly detection in mixed numerical and categorical input spaceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleInformation Scienceses_ES
UDC.volume487es_ES
UDC.startPage115es_ES
UDC.endPage127es_ES
dc.identifier.doi10.1016/j.ins.2019.03.013
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvLaboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2015-65069-C2-1-R/ALGORITMOS ESCALABLES DE APRENDIZAJE COMPUTACIONAL: MAS ALLA DE LA CLASIFICACION Y LA REGRESIONes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2015-65069-C2-2-R/ES/ALGORITMOS ESCALABLES DE APRENDIZAJE COMPUTACIONAL: MAS ALLA DE LA CLASIFICACION Y LA REGRESIONes_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem