Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences

Thumbnail
Ver/Abrir
Meira_Jorge_2022_Anomaly_Detection_On_Natural_Language.pdf (1.356Mb)
Use este enlace para citar
http://hdl.handle.net/2183/30297
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences
Autor(es)
Meira, Jorge
Carneiro, João
Bolón-Canedo, Verónica
Alonso-Betanzos, Amparo
Novais, Paulo
Marreiros, Goreti
Fecha
2022
Cita bibliográfica
Meira, J.; Carneiro, J.; Bolón-Canedo, V.; Alonso-Betanzos, A.; Novais, P.; Marreiros, G. Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences. Electronics 2022, 11, 779. https://doi.org/10.3390/electronics11050779
Resumen
[Abstract] Argumentation-based dialogue models have shown to be appropriate for decision contexts in which it is intended to overcome the lack of interaction between decision-makers, either because they are dispersed, they are too many, or they are simply not even known. However, to support decision processes with argumentation-based dialogue models, it is necessary to have knowledge of certain aspects that are specific to each decision-maker, such as preferences, interests, and limitations, among others. Failure to obtain this knowledge could ruin the model’s success. In this work, we sought to facilitate the information acquisition process by studying strategies to automatically predict the tourists’ preferences (ratings) in relation to points of interest based on their reviews. We explored different Machine Learning methods to predict users’ ratings. We used Natural Language Processing strategies to predict whether a review is positive or negative and the rating assigned by users on a scale of 1 to 5. We then applied supervised methods such as Logistic Regression, Random Forest, Decision Trees, K-Nearest Neighbors, and Recurrent Neural Networks to determine whether a tourist likes/dislikes a given point of interest. We also used a distinctive approach in this field through unsupervised techniques for anomaly detection problems. The goal was to improve the supervised model in identifying only those tourists who truly like or dislike a particular point of interest, in which the main objective is not to identify everyone, but fundamentally not to fail those who are identified in those conditions. The experiments carried out showed that the developed models could predict with high accuracy whether a review is positive or negative but have some difficulty in accurately predicting the rating assigned by users. Unsupervised method Local Outlier Factor improved the results, reducing Logistic Regression false positives with an associated cost of increasing false negatives.
Palabras clave
Machine learning
Natural language processing
Sentiment analysis
Argumentation-based dialogues
Tourism
TripAdvisor
 
Descripción
This article belongs to the Special Issue Advances in Explainable Artificial Intelligence and Edge Computing Applications
Versión del editor
https://doi.org/10.3390/electronics11050779
Derechos
Atribución 4.0 Internacional
ISSN
2079-9292

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias