Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and Implementation of MapReduce using the PGAS Programming Model with UPC

Thumbnail
Ver/Abrir
C.Teijeiro_Design_and_Implementation_of_MapReduce_using_the_PGAS_Programming_2011.pdf (154.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/22669
Colecciones
  • Investigación (FIC) [1728]
Metadatos
Mostrar el registro completo del ítem
Título
Design and Implementation of MapReduce using the PGAS Programming Model with UPC
Autor(es)
Teijeiro Barjas, Carlos
Taboada, Guillermo L.
Touriño, Juan
Doallo, Ramón
Fecha
2012-01-03
Cita bibliográfica
TEIJEIRO, Carlos, et al. Design and Implementation of MapReduce using the PGAS Programming Model with UPC. En 2011 IEEE 17th International Conference on Parallel and Distributed Systems. IEEE, 2011. p. 196-203.
Resumen
[Abstract] MapReduce is a powerful tool for processing large data sets used by many applications running in distributed environments. However, despite the increasing number of computationally intensive problems that require low-latency communications, the adoption of MapReduce in High Performance Computing (HPC) is still emerging. Here languages based on the Partitioned Global Address Space (PGAS) programming model have shown to be a good choice for implementing parallel applications, in order to take advantage of the increasing number of cores per node and the programmability benefits achieved by their global memory view, such as the transparent access to remote data. This paper presents the first PGAS-based MapReduce implementation that uses the Unified Parallel C (UPC) language, which (1) obtains programmability benefits in parallel programming, (2) offers advanced configuration options to define a customized load distribution for different codes, and (3) overcomes performance penalties and bottlenecks that have traditionally prevented the deployment of MapReduce applications in HPC. The performance evaluation of representative applications on shared and distributed memory environments assesses the scalability of the presented MapReduce framework, confirming its suitability.
Palabras clave
UPC
MapReduce
HPC
Programmability
Collective primitives
 
Descripción
This is a post-peer-review, pre-copyedit version of an article published in International Conference on Parallel and Distributed Systems. Proceedings. The final authenticated version is available online at: http://dx.doi.org/10.1109/ICPADS.2011.162
Versión del editor
http://dx.doi.org/10.1109/ICPADS.2011.162
ISSN
1521-9097

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias