Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting vertical urban growth using genetic evolutionary algorithms in Tokyo’s minato ward

Thumbnail
Ver/Abrir
PazosPerez_Predicting.pdf (1.096Mb)
Use este enlace para citar
http://hdl.handle.net/2183/22136
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Predicting vertical urban growth using genetic evolutionary algorithms in Tokyo’s minato ward
Autor(es)
Pazos Pérez, Rafael Iván
Carballal, Adrián
Rabuñal, Juan R.
Mures, Omar A.
García Vidaurrazaga,M.D.
Fecha
2018-03
Cita bibliográfica
Pazos Pérez RI, Carballal A, Rabuñal JR, et al. Predicting vertical urban growth using genetic evolutionary algorithms in Tokyo’s minato ward. J Urban Plan Develop. 2018; 144(1): 04017024
Resumen
[Abstract] This article explores the use of evolutionary genetic algorithms to predict scenarios of urban vertical growth in large urban centers. Tokyo’s Minato Ward is used as a case study because it has been one of the fastest growing skylines over the last 20 years. This study uses a genetic algorithm that simulates the vertical urban growth of Minato Ward to make predictions from pre-established inputted parameters. The algorithm estimates not only the number of future high-rise buildings but also the specific areas in the ward that are more likely to accommodate new high-rise developments in the future. The evolutionary model results are compared with ongoing high-rise developments in order to evaluate the accuracy of the genetic algorithm in simulating future vertical urban growth. The results of this study show that the use of genetic evolutionary computation is a promising way to predict scenarios of vertical urban growth in terms of location as well as the number of future buildings.
Palabras clave
Urban morphogenesis
Genetic algorithms
Evolutionary computation
Minato Ward
Tokyo
Skyscrapers
 
Versión del editor
http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000413
ISSN
0733-9488

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias