Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Burned area prediction with semiparametric models

Thumbnail
Ver/Abrir
Lombardía_Cortiña_María_José_2016_Burned_area_prediction_with_semiparametric_models.pdf (782.8Kb)
Use este enlace para citar
http://hdl.handle.net/2183/16695
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1683]
Metadatos
Mostrar el registro completo del ítem
Título
Burned area prediction with semiparametric models
Autor(es)
Lombardía, María José
Boubeta, Miguel
González Manteiga, Wenceslao
Marey Pérez, Manuel Francisco
Fecha
2016-04-27
Cita bibliográfica
Boubeta-Martínez, M.; Lombardía, M. J.; González-Manteiga, W. and Marey Pérez, Manuel F. (2016). "Burned area prediction with semiparametric models". International Journal of Wildland Fire
Resumen
[Abstract] Wildfires are one of the main causes of forest destruction, especially in Galicia (north-west Spain), where the area burned by forest fires in spring and summer is quite high. This work uses two semiparametric time-series models to describe and predict the weekly burned area in a year: autoregressive moving average (ARMA) modelling after smoothing, and smoothing after ARMA modelling. These models can be described as a sum of a parametric component modelled by an autoregressive moving average process and a non-parametric one. To estimate the non-parametric component, local linear and kernel regression, B-splines and P-splines were considered. The methodology and software were applied to a real dataset of burned area in Galicia for the period 1999–2008. The burned area in Galicia increases strongly during summer periods. Forest managers are interested in predicting the burned area to manage resources more efficiently. The two semiparametric models are analysed and compared with a purely parametric model. In terms of error, the most successful results are provided by the first semiparametric time-series model.
Palabras clave
Bootstrap
Burned area
Prediction
Semiparametric model
Time series
Forest fires
 
Versión del editor
http://dx.doi.org/10.1071/WF15125
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
1049-8001
1448-5516
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias