Asymptotic inference for a sign-double autoregressive (SDAR) model of order one.

Use este enlace para citar
http://hdl.handle.net/2183/40863
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0
Colecciones
- Investigación (FEE) [893]
Metadatos
Mostrar el registro completo del ítemTítulo
Asymptotic inference for a sign-double autoregressive (SDAR) model of order one.Autor(es)
Fecha
2025Cita bibliográfica
Iglesias, E. M. (2025). Asymptotic inference for a sign-double autoregressive (SDAR) model of order one. Econometric Reviews, 44(3), 312–334. https://doi.org/10.1080/07474938.2024.2416664
Resumen
[Abstract]: We propose an extension of the double autoregressive (DAR) model: the sign-double autoregressive (SDAR) model, in the spirit of the GJR-GARCH model (also named the sign-ARCH
model). Our model shares the important property of DAR models where a unit root does not
imply nonstationarity and it allows for asymmetry, as other alternatives in the literature such
as the GJR-GARCH or asymmetric linear DAR and dual-asymmetry linear DAR models. We
establish consistency and asymptotic normality of the quasi-maximum likelihood estimator in
the context of the SDAR model. Furthermore, it is shown by simulations that the asymptotic
properties also apply in finite samples. Finally, an empirical application shows the usefulness
of our model specially in periods of supply/demand crises of oil disruptions, where spikes of
volatility are very likely to be predominant.
Palabras clave
Sign-double autoregressive model
Asymptotic normality
Asymptotic theory
Consistency
Stationarity
Quasi maximum likelihood estimation
Asymptotic normality
Asymptotic theory
Consistency
Stationarity
Quasi maximum likelihood estimation
Versión del editor
Derechos
Atribución-NoComercial-SinDerivadas 4.0
ISSN
0747-4938
1532-4168
1532-4168