Show simple item record

dc.contributor.authorFernández Fraga, Alejandro
dc.contributor.authorGonzález-Domínguez, Jorge
dc.contributor.authorMartín, María J.
dc.date.accessioned2024-12-18T16:04:47Z
dc.date.available2024-12-18T16:04:47Z
dc.date.issued2025-02
dc.identifier.citationFernández-Fraga, A., González-Domínguez, J., Martín, María J. (2025). BetaGPU: Harnessing GPU power for parallelized beta distribution functions, SoftwareX, 29(102009), 2025. https://doi.org/10.1016/j.softx.2024.102009es_ES
dc.identifier.issn2352-7110
dc.identifier.urihttp://hdl.handle.net/2183/40549
dc.descriptionPermanent link to code/repository used for this code version: https://github.com/ElsevierSoftwareX/SOFTX-D-24-00555. Link to developer documentation/manual: https://github.com/UDC-GAC/BetaGPUes_ES
dc.description.abstract[Abstract]: The efficient computation of Beta distribution functions, particularly the Probability Density Function (PDF) and Cumulative Distribution Function (CDF), is critical in various scientific fields, including bioinformatics and data analysis. This work presents BetaGPU, a high-performance software package written in C++ and CUDA that leverages the parallel processing capabilities of Graphics Processing Units (GPUs) to significantly accelerate these computations, with an OpenMP version for multiCPU systems, and integrated seamlessly with popular statistical programming languages R and Python. This open-source package provides an accessible, accurate, and scalable solution for researchers and practitioners. By offloading intensive calculations to the GPU, this software is significantly faster than traditional single-core CPU-based methods, facilitating faster data analysis and enabling real-time applications. The software’s high performance and ease of use make it an invaluable tool for users in bioinformatics and other data-intensive domains.es_ES
dc.description.sponsorshipThis work was supported by grants TED2021-130599A-I00 and PID2022-136435NB-I00, funded by MCIN/AEI/ (TED2021 also funded by “NextGenerationEU”/PRTR and PID2022 by “ERDF A way of making Europe”, EU); grant TSI-100925-2023-1, funded by Ministry for Digital Transformation and Civil Service and Next-GenerationEU/RRF; and FPU predoctoral grant of Alejandro Fernández-Fraga ref. FPU21/03408, funded by the Ministry of Science, Innovation and Universities, Spain. We gratefully thank the Galician Supercomputing Center (CESGA) for the access granted to its supercomputing resources. Funding for open access charge: Universidade da Coruña/CISUG.es_ES
dc.description.sponsorshipFinanciado para publicación en acceso aberto: Universidade da Coruña/CISUGes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/TED2021-130599A-I00/ES/ALGORITMOS DE SELECCIÓN DE CARACTERÍSTICAS VERDES Y RÁPIDOSes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136435NB-I00/ES/ARQUITECTURAS, FRAMEWORKS Y APLICACIONES DE LA COMPUTACION DE ALTAS PRESTACIONESes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TSI-100925-2023-1/ES/es_ES
dc.relationinfo:eu-repo/grantAgreement/MECD/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/FPU21%2F03408/ES/es_ES
dc.relation.urihttps://doi.org/10.1016/j.softx.2024.102009es_ES
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectBeta distributiones_ES
dc.subjectHigh performance computinges_ES
dc.subjectGPUes_ES
dc.subjectCUDAes_ES
dc.subjectRes_ES
dc.subjectOpenMPes_ES
dc.subjectPythones_ES
dc.titleBetaGPU: Harnessing GPU power for parallelized beta distribution functionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleSoftwareXes_ES
UDC.volume29es_ES
UDC.issueArt. nº 102009es_ES
UDC.startPage1es_ES
UDC.endPage7es_ES
dc.identifier.doi10.1016/j.softx.2024.102009
UDC.coleccionInvestigaciónes_ES
UDC.departamentoEnxeñaría de Computadoreses_ES
UDC.grupoInvGrupo de Arquitectura de Computadores (GAC)es_ES
UDC.institutoCentroCITIC - Centro de Investigación de Tecnoloxías da Información e da Comunicaciónes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record