dc.contributor.author | Fernández Fraga, Alejandro | |
dc.contributor.author | González-Domínguez, Jorge | |
dc.contributor.author | Martín, María J. | |
dc.date.accessioned | 2024-12-18T16:04:47Z | |
dc.date.available | 2024-12-18T16:04:47Z | |
dc.date.issued | 2025-02 | |
dc.identifier.citation | Fernández-Fraga, A., González-Domínguez, J., Martín, María J. (2025). BetaGPU: Harnessing GPU power for parallelized beta distribution functions, SoftwareX, 29(102009), 2025. https://doi.org/10.1016/j.softx.2024.102009 | es_ES |
dc.identifier.issn | 2352-7110 | |
dc.identifier.uri | http://hdl.handle.net/2183/40549 | |
dc.description | Permanent link to code/repository used for this code version: https://github.com/ElsevierSoftwareX/SOFTX-D-24-00555.
Link to developer documentation/manual: https://github.com/UDC-GAC/BetaGPU | es_ES |
dc.description.abstract | [Abstract]: The efficient computation of Beta distribution functions, particularly the Probability Density Function (PDF) and Cumulative Distribution Function (CDF), is critical in various scientific fields, including bioinformatics and data analysis. This work presents BetaGPU, a high-performance software package written in C++ and CUDA that leverages the parallel processing capabilities of Graphics Processing Units (GPUs) to significantly accelerate these computations, with an OpenMP version for multiCPU systems, and integrated seamlessly with popular statistical programming languages R and Python. This open-source package provides an accessible, accurate, and scalable solution for researchers and practitioners. By offloading intensive calculations to the GPU, this software is significantly faster than traditional single-core CPU-based methods, facilitating faster data analysis and enabling real-time applications. The software’s high performance and ease of use make it an invaluable tool for users in bioinformatics and other data-intensive domains. | es_ES |
dc.description.sponsorship | This work was supported by grants TED2021-130599A-I00 and PID2022-136435NB-I00, funded by MCIN/AEI/ (TED2021 also funded by “NextGenerationEU”/PRTR and PID2022 by “ERDF A way of making Europe”, EU); grant TSI-100925-2023-1, funded by Ministry for Digital Transformation and Civil Service and Next-GenerationEU/RRF; and FPU predoctoral grant of Alejandro Fernández-Fraga ref. FPU21/03408, funded by the Ministry of Science, Innovation and Universities, Spain. We gratefully thank the Galician Supercomputing Center (CESGA) for the access granted to its supercomputing resources. Funding for open access charge: Universidade da Coruña/CISUG. | es_ES |
dc.description.sponsorship | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/TED2021-130599A-I00/ES/ALGORITMOS DE SELECCIÓN DE CARACTERÍSTICAS VERDES Y RÁPIDOS | es_ES |
dc.relation | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136435NB-I00/ES/ARQUITECTURAS, FRAMEWORKS Y APLICACIONES DE LA COMPUTACION DE ALTAS PRESTACIONES | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TSI-100925-2023-1/ES/ | es_ES |
dc.relation | info:eu-repo/grantAgreement/MECD/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/FPU21%2F03408/ES/ | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.softx.2024.102009 | es_ES |
dc.rights | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/es/ | * |
dc.subject | Beta distribution | es_ES |
dc.subject | High performance computing | es_ES |
dc.subject | GPU | es_ES |
dc.subject | CUDA | es_ES |
dc.subject | R | es_ES |
dc.subject | OpenMP | es_ES |
dc.subject | Python | es_ES |
dc.title | BetaGPU: Harnessing GPU power for parallelized beta distribution functions | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.access | info:eu-repo/semantics/openAccess | es_ES |
UDC.journalTitle | SoftwareX | es_ES |
UDC.volume | 29 | es_ES |
UDC.issue | Art. nº 102009 | es_ES |
UDC.startPage | 1 | es_ES |
UDC.endPage | 7 | es_ES |
dc.identifier.doi | 10.1016/j.softx.2024.102009 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Enxeñaría de Computadores | es_ES |
UDC.grupoInv | Grupo de Arquitectura de Computadores (GAC) | es_ES |
UDC.institutoCentro | CITIC - Centro de Investigación de Tecnoloxías da Información e da Comunicación | es_ES |