dc.contributor.author | Montero-Lamas, Yaiza | |
dc.contributor.author | Fernández-Casal, Rubén | |
dc.contributor.author | Varela-García, Francisco-Alberto | |
dc.contributor.author | Orro, Alfonso | |
dc.contributor.author | Novales, Margarita | |
dc.date.accessioned | 2024-11-21T17:51:40Z | |
dc.date.available | 2024-11-21T17:51:40Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Yaiza Montero-Lamas, Rubén Fernández-Casal, Francisco-Alberto Varela-García, Alfonso Orro, Margarita Novales. (2024). A spatial statistical approach to estimate bus stop demand using GIS-processed data, Journal of Transport Geography, 118, 103906, https://doi.org/10.1016/j.jtrangeo.2024.103906 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/40239 | |
dc.description | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG | es_ES |
dc.description.abstract | [Abstract:] This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits. | es_ES |
dc.description.sponsorship | The authors would like to thank Compañía de Tranvías de La Coruña and Concello da Coruña for providing the data required to prepare this paper. This work was funded by grants PID2021-128255OB-I00 and PRE2019-089651, funded by MCIN/AEI/10.13039/501100011033 and by ERDF/EU and ESF/EU. The research of Rubén Fernández-Casal has also been supported by Grant PID2020-113578RB-I00, funded by MCIN/AEI/10.13039/501100011033, by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2020/14) and by CITIC that is supported by Xunta de Galicia, convenio de colaboración entre la Consellería de Cultura, Educación, Formación Profesional e Universidades y las universidades gallegas para el refuerzo de los centros de investigación del Sistema Universitario de Galicia (CIGUS). Funding for open access charge: Universidade da Coruña/CISUG. | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C-2020/14 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.jtrangeo.2024.103906 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Geospatial analysis | es_ES |
dc.subject | Spatial dependence | es_ES |
dc.subject | GIS | es_ES |
dc.subject | Generalized additive models | es_ES |
dc.subject | Bus stop demand estimation | es_ES |
dc.subject | Transit planning | es_ES |
dc.title | A spatial statistical approach to estimate bus stop demand using GIS-processed data | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Journal of Transport Geography | es_ES |
UDC.volume | 118 | es_ES |
UDC.startPage | 103906 | es_ES |
dc.identifier.doi | 10.1016/j.jtrangeo.2024.103906 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Enxeñaría Civil | es_ES |
UDC.grupoInv | Grupo de Ferrocarrís e Transportes (FERROTRANS) | es_ES |
UDC.institutoCentro | CITEEC - Centro de Innovación Tecnolóxica en Edificación e Enxeñaría Civil | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128255OB-I00/ES/PLANIFICACION INTELIGENTE DEL TRANSPORTE PUBLICO MEDIANTE LA EXPLOTACION DE SERIES TEMPORALES DE DATOS MASIVOS GEOLOCALIZADOS | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PRE2019-089651/ES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113578RB-I00/ES/METODOS ESTADISTICOS FLEXIBLES EN CIENCIA DE DATOS PARA DATOS COMPLEJOS Y DE GRAN VOLUMEN: TEORIA Y APLICACIONES | es_ES |