Show simple item record

dc.contributor.authorMontero-Lamas, Yaiza
dc.contributor.authorFernández-Casal, Rubén
dc.contributor.authorVarela-García, Francisco-Alberto
dc.contributor.authorOrro, Alfonso
dc.contributor.authorNovales, Margarita
dc.date.accessioned2024-11-21T17:51:40Z
dc.date.available2024-11-21T17:51:40Z
dc.date.issued2024
dc.identifier.citationYaiza Montero-Lamas, Rubén Fernández-Casal, Francisco-Alberto Varela-García, Alfonso Orro, Margarita Novales. (2024). A spatial statistical approach to estimate bus stop demand using GIS-processed data, Journal of Transport Geography, 118, 103906, https://doi.org/10.1016/j.jtrangeo.2024.103906es_ES
dc.identifier.urihttp://hdl.handle.net/2183/40239
dc.descriptionFinanciado para publicación en acceso aberto: Universidade da Coruña/CISUGes_ES
dc.description.abstract[Abstract:] This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits.es_ES
dc.description.sponsorshipThe authors would like to thank Compañía de Tranvías de La Coruña and Concello da Coruña for providing the data required to prepare this paper. This work was funded by grants PID2021-128255OB-I00 and PRE2019-089651, funded by MCIN/AEI/10.13039/501100011033 and by ERDF/EU and ESF/EU. The research of Rubén Fernández-Casal has also been supported by Grant PID2020-113578RB-I00, funded by MCIN/AEI/10.13039/501100011033, by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2020/14) and by CITIC that is supported by Xunta de Galicia, convenio de colaboración entre la Consellería de Cultura, Educación, Formación Profesional e Universidades y las universidades gallegas para el refuerzo de los centros de investigación del Sistema Universitario de Galicia (CIGUS). Funding for open access charge: Universidade da Coruña/CISUG.es_ES
dc.description.sponsorshipXunta de Galicia; ED431C-2020/14es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.jtrangeo.2024.103906es_ES
dc.rightsAtribución-NoComercial-SinDerivadases_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectGeospatial analysises_ES
dc.subjectSpatial dependencees_ES
dc.subjectGISes_ES
dc.subjectGeneralized additive modelses_ES
dc.subjectBus stop demand estimationes_ES
dc.subjectTransit planninges_ES
dc.titleA spatial statistical approach to estimate bus stop demand using GIS-processed dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleJournal of Transport Geographyes_ES
UDC.volume118es_ES
UDC.startPage103906es_ES
dc.identifier.doi10.1016/j.jtrangeo.2024.103906
UDC.coleccionInvestigaciónes_ES
UDC.departamentoEnxeñaría Civiles_ES
UDC.grupoInvGrupo de Ferrocarrís e Transportes (FERROTRANS)es_ES
UDC.institutoCentroCITEEC - Centro de Innovación Tecnolóxica en Edificación e Enxeñaría Civiles_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128255OB-I00/ES/PLANIFICACION INTELIGENTE DEL TRANSPORTE PUBLICO MEDIANTE LA EXPLOTACION DE SERIES TEMPORALES DE DATOS MASIVOS GEOLOCALIZADOSes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PRE2019-089651/ES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113578RB-I00/ES/METODOS ESTADISTICOS FLEXIBLES EN CIENCIA DE DATOS PARA DATOS COMPLEJOS Y DE GRAN VOLUMEN: TEORIA Y APLICACIONESes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record