dc.contributor.author | Álvarez-Rodríguez, Lorena | |
dc.contributor.author | Pueyo-Bestué, Ana | |
dc.contributor.author | Moura, Joaquim de | |
dc.contributor.author | Viladés, Elisa | |
dc.contributor.author | García-Martín, Elena | |
dc.contributor.author | Sánchez, Clara I. | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2024-11-06T10:14:33Z | |
dc.date.available | 2024-11-06T10:14:33Z | |
dc.date.issued | 2024-12 | |
dc.identifier.citation | L. Álvarez-Rodríguez, A. Pueyo, J. de Moura et al., Fully automatic deep convolutional approaches for the screening of neurodegeneratives diseases using multi-view OCT images. Artificial Intelligence In Medicine (2024), doi: https://doi.org/10.1016/j.artmed.2024.103006 | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/39954 | |
dc.description.abstract | [Abstract]: The prevalence of neurodegenerative diseases (NDDs) such as Alzheimer’s (AD), Parkinson’s (PD), Essential tremor (ET), and Multiple Sclerosis (MS) is increasing alongside the aging population. Recent studies suggest that these disorders can be identified through retinal imaging, allowing for early detection and monitoring via Optical Coherence Tomography (OCT) scans. This study is at the forefront of research, pioneering the application of multi-view OCT and 3D information to the neurological diseases domain. Our methodology consists of two main steps. In the first one, we focus on the segmentation of the retinal nerve fiber layer (RNFL) and a class layer grouping between the ganglion cell layer and Bruch’s membrane (GCL-BM) in both macular and optic disc OCT scans. These are the areas where changes in thickness serve as a potential indicator of NDDs. The second phase is to select patients based on information about the retinal layers. We explore how the integration of both views (macula and optic disc) improves each screening scenario: Healthy Controls (HC) vs. NDD, AD vs. NDD, ET vs. NDD, MS vs. NDD, PD vs. NDD, and a final multi-class approach considering all four NDDs. For the segmentation task, we obtained satisfactory results for both 2D and 3D approaches in macular segmentation, in which 3D performed better due to the inclusion of depth and cross-sectional information. As for the optic disc view, transfer learning did not improve the metrics over training from scratch, but it did provide a faster training. As for screening, 3D computational biomarkers provided better results than 2D ones, and multi-view methods were usually better than the single-view ones. Regarding separability among diseases, MS and PD were the ones that provided better results in their screening approaches, being also the most represented classes. In conclusion, our methodology has been successfully validated with an extensive experimentation of configurations, techniques and OCT views, becoming the first multi-view analysis that merges data from both macula-centered and optic disc-centered perspectives. Besides, it is also the first effort to examine key retinal layers across four major NDDs within the framework of pathological screening. | es_ES |
dc.description.sponsorship | This research was funded by Instituto de Salud Carlos III, Government of Spain, [research projects PI17/01726 and PI20/00437]; Inflammatory Disease Network (RICORS) [research project RD21/0002/0050]; Ministerio de Ciencia e Innovación, Government of Spain through the research project with grant numbers [PID2023-148913OB-I00, TED2021-131201B-I00, and PDC2022-133132-I00]; Consellería de Educación, Universidade, e Formación Profesional, Xunta de Galicia, Grupos de Referencia Competitiva, [grant number ED431C 2024/33]. Furthermore, this work was supported by the Instituto de Salud Carlos III (ISCIII) under the grant [FORT23/00010] as part of the Programa FORTALECE of Ministerio de Ciencia e Innovación. The funding organisations had no role in the design or conduct of this research. | es_ES |
dc.description.sponsorship | Gobierno de Aragón; RD21/0002/0050 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431C 2024/33 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier B.V. | es_ES |
dc.relation.uri | https://doi.org/10.1016/j.artmed.2024.103006 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.subject | Neurodegenerative diseases | es_ES |
dc.subject | OCT | es_ES |
dc.subject | Multi-view | es_ES |
dc.subject | Retinal layers | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Screening | es_ES |
dc.subject | Retinal layers segmentation | es_ES |
dc.title | Fully automatic deep convolutional approaches for the screening of neurodegeneratives diseases using multi-view OCT images | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Artificial Intelligence in Medicine | es_ES |
UDC.volume | 158 | es_ES |
UDC.issue | 103006 | es_ES |
dc.identifier.doi | 10.1016/j.artmed.2024.103006 | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Grupo de Visión Artificial e Recoñecemento de Patróns (VARPA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PI17%2F01726/ES/EVALUACIÓN NEUROOFTALMOLÓGICA COMO BIOMARCADOR DIAGNÓSTICO, EVOLUTIVO Y PRONÓSTICO EN EL CURSO DE LA ESCLEROSIS MÚLTIPLE | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PI20%2F00437/ES/LA NEURORRETINA COMO BIOMARCADOR PRECOZ Y DE PROGRESION DESDE DETERIORO COGNITIVO LEVE A ALZHEIMER Y EFECTO PROTECTOR DE LA REHABILITACION COGNITIVO-VISUAL EN LA PROGRESION DE LA DEMENCIA | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-148913OB-I00/ES/IA CONFIABLE Y EXPLICABLE PARA EL DIAGNÓSTICO POR IMAGEN MÉDICA ASISTIDO POR ORDENADOR: NUEVOS AVANCES Y APLICACIONES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131201B-I00/ES/DIAGNÓSTICO DIGITAL: TRANSFORMACIÓN DE LA DETECCIÓN DE ENFERMEDADES NEUROVASCULARES Y DEL TRATAMIENTO DE LOS PACIENTES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PDC2022-133132-I00/ES/MEJORAS EN EL DIAGNÓSTICO E INVESTIGACIÓN CLÍNICO MEDIANTE TECNOLOGÍAS INTELIGENTES APLICADAS LA IMAGEN OFTALMOLÓGICA | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/FORT23%2F00010/ES/Programa FORTALECE - Instituto de Investigación Biomédica de A Coruña (INIBIC) | es_ES |