Show simple item record

dc.contributor.authorLópez-Varela, Emilio
dc.contributor.authorOlivier Pascual, Nuria
dc.contributor.authorQuezada-Sánchez, Johnny
dc.contributor.authorOreja-Guevara, Celia
dc.contributor.authorBarreira, Noelia
dc.date.accessioned2024-10-02T12:44:59Z
dc.date.available2024-10-02T12:44:59Z
dc.date.issued2025-02
dc.identifier.citationE. López-Varela, N. Olivier Pascual, J. Quezada-Sánchez, C. Oreja-Guevara, and N. Barreira, "Efficient semi-supervised hierarchical training for segmenting choroidal vessels and other structures on OCT images of multiple sclerosis patients", Biomedical Signal Processing and Control, Vol. 100, Part C, Feb. 2025, 106937, doi: 10.1016/j.bspc.2024.106937es_ES
dc.identifier.urihttp://hdl.handle.net/2183/39370
dc.description.abstract[Abstract]: Optical coherence tomography (OCT) is a non-invasive imaging technique used to diagnose ocular and systemic diseases. Recently, several clinical studies have linked changes in different ocular layers to the development of multiple sclerosis (MS), so accurate segmentation of these structures has become an essential task. Unfortunately, segmenting the entire set of structures involved is a very difficult task, due to their large number and variability. These two factors hinder the labeling of images and therefore severely restrict the ability to achieve a large dataset with all structures manually annotated, limiting the use of a standard supervised approach. In this paper, we propose a semi-supervised learning methodology to robustly segment ocular structures in OCT images using a limited number of partially labeled images. Our methodology maximizes the information we can extract from labeled images through hierarchical learning, where multiple decoders are used to extract segmented structures progressively. We use a reconstruction loss function to provide structural coherence to the segmentation and a teacher–student strategy to effectively leverage the information present in the set of unlabeled images. In addition to the segmentation of labeled structures, this hierarchical approach allows segmenting structures that are not labeled in the dataset such as the choroidal vessels. To validate the proposed methodology, we have carried out extensive experimentation using two datasets with different characteristics. These experiments have demonstrated a great potential of this methodology to train networks efficiently with partially labeled images, which allows to accurately extract the main biomarkers linked to the development of MS.es_ES
dc.description.sponsorshipThis research was funded by Government of Spain, Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project; Ministerio de Ciencia e Innovación, Government of Spain through the research projects with reference PID2019-108435RB-I00, PDC2022-133132-I00 and TED2021-1312 01B-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia through the Grupos de Referencia Competitiva, grant ref. ED431C 2020/24; CITIC, as Research Center accredited by Galician University System, is funded by ‘‘Consellería de Cultura, Educación e Universidade from Xunta de Galicia, Spain’’, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014–2020, and the remaining 20% by ‘‘Secretaría Xeral de Universidades, Spain’’, grant ref. ED431G 2019/01. Emilio López Varela acknowledges its support under FPI, Spain Grant Program through PID2019-108435RB-I00 project.es_ES
dc.description.sponsorshipXunta de Galicia; ED431C 2020/24es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095894-B-I00/ES/DESARROLLO DE TECNOLOGIAS INTELIGENTES PARA DIAGNOSTICO DE LA DMAE BASADAS EN EL ANALISIS AUTOMATICO DE NUEVAS MODALIDADES HETEROGENEAS DE ADQUISICION DE IMAGEN OFTALMOLOGICAes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108435RB-I00/ES/CUANTIFICACIÓN Y CARACTERIZACIÓN COMPUTACIONAL DE IMAGEN MULTIMODAL OFTALMOLÓGICA: ESTUDIOS EN ESCLEROSIS MÚLTIPLEes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2024/PDC2022-133132-I00/ES/MEJORAS EN EL DIAGNÓSTICO E INVESTIGACIÓN CLÍNICO MEDIANTE TECNOLOGÍAS INTELIGENTES APLICADAS LA IMAGEN OFTALMOLÓGICAes_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131201B-I00/ES/DIAGNÓSTICO DIGITAL: TRANSFORMACIÓN DE LA DETECCIÓN DE ENFERMEDADES NEUROVASCULARES Y DEL TRATAMIENTO DE LOS PACIENTESes_ES
dc.relation.urihttps://doi.org/10.1016/j.bspc.2024.106937es_ES
dc.rightsAttribution 4.0 International (CC BY)es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectOptical coherence tomographyes_ES
dc.subjectSemi-supervised learninges_ES
dc.subjectReconstruction losses_ES
dc.subjectTeacher student networkes_ES
dc.subjectContrastive learninges_ES
dc.subjectMultiple sclerosises_ES
dc.titleEfficient semi-supervised hierarchical training for segmenting choroidal vessels and other structures on OCT images of multiple sclerosis patientses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleBiomedical Signal Processing and Controles_ES
UDC.volume100es_ES
UDC.issuePart Ces_ES
UDC.startPage106937es_ES
dc.identifier.doi10.1016/j.bspc.2024.106937
UDC.coleccionInvestigación
UDC.departamentoCiencias da Computación e Tecnoloxías da Información
UDC.grupoInvGrupo de Visión Artificial e Recoñecemento de Patróns (VARPA)


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record