Show simple item record

dc.contributor.authorMures, Omar A.
dc.contributor.authorTaibo, Javier
dc.contributor.authorPadrón, Emilio J.
dc.contributor.authorIglesias-Guitian, Jose A.
dc.date.accessioned2024-06-27T12:14:34Z
dc.date.available2024-06-27T12:14:34Z
dc.date.issued2023
dc.identifier.citationMures, O. A., Taibo, J., Padrón, E. J., & Iglesias-Guitian, J. A. (2024). A comprehensive handball dynamics dataset for game situation classification. Data in Brief, 52, 109848. https://doi.org/10.1016/j.dib.2023.109848es_ES
dc.identifier.issn2352-3409
dc.identifier.urihttp://hdl.handle.net/2183/37496
dc.description.abstract[Abstract] This article presents a comprehensive dataset of labeled game situations obtained from multiple professional handball matches, which corresponds to the research paper entitled “PlayNet: Real-time Handball Play Classification with Kalman Embeddings and Neural Networks” [1]. The dataset encompasses approximately 11 hours of footage from five handball games played in two different arenas, resulting in around 1 million data frames. Each frame has been meticulously labeled using seven distinct game situation classes (left and right attacks, left and right transitions, left and right penalties, and timeouts). Notably, the dataset does not contain video frames, but provides a synthetic normalized representation of each frame. This representation includes information about player, referee, and ball positions, as well as player and referee velocities, for every labeled game situation. We obtained said details automatically by using an object detector to infer the positions of players, referees, and the ball in each frame. After tracking the detected agent positions across frames, the extracted coordinates underwent normalization through a “bird's eye” perspective transform, ensuring that the data remained unaffected by variations in camera configurations across different arenas. Finally, a Kalman filter was applied to improve the robustness of player positions and derive their velocities. The labeling process was performed by domain experts employing a custom system designed to annotate game situations, considering the play type and its contextual setting. In conclusion, researchers can utilize this dataset for several purposes: game analysis, automated broadcasting, or game summarization. Furthermore, this dataset can contribute to a broader understanding of the relationship between player dynamics and game situations, shedding light on the level of granularity required for accurately classifying them.es_ES
dc.description.sponsorshipThis work has been developed under the European Innovation Council [Pilot No 954040], Xunta de Galicia [ED431F 2021/11, ED431G 2019/01, ED431C 2021/30], Spanish Ministry of Science and Innovation [MCIN/AEI/10.13039/501100011033, AEI/RYC2018-025385-I, PID2019- 104184RB-I00], and Jose A. Iglesias-Guitian also acknowledges the UDC-Inditex InTalent programme. Funding for open access charge: Universidade da Coruña/CISUG.es_ES
dc.description.sponsorshipXunta de Galicia; ED431F 2021/11es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.description.sponsorshipXunta de Galicia; ED431C 2021/30es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/954040es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/ Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/10.13039/501100011033/ES/es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-025385-I/ES/es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104184RB-I00/ES/DESAFIOS ACTUALES EN HPC: ARQUITECTURAS, SOFTWARE Y APLICACIONESes_ES
dc.relation.urihttps://doi.org/10.1016/j.dib.2023.109848es_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.subjectSportses_ES
dc.subjectKalman filteres_ES
dc.subjectPlayerses_ES
dc.subjectBalles_ES
dc.subjectPositiones_ES
dc.subjectVelocityes_ES
dc.subjectNormalizedes_ES
dc.subjectGame situationes_ES
dc.titleA comprehensive handball dynamics dataset for game situation classificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleData in Briefes_ES
UDC.volume52es_ES
dc.identifier.doihttps://doi.org/10.1016/j.dib.2023.109848
UDC.coleccionInvestigaciónes_ES
UDC.departamentoEnxeñaría de Computadoreses_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvComputer Graphics & Visual Computing (XLab)es_ES
UDC.grupoInvModels and Applications of Distributed Systems (MADS)es_ES
UDC.grupoInvGrupo de Arquitectura de Computadores (GAC)es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record