Show simple item record

dc.contributor.authorBolón-Canedo, Verónica
dc.contributor.authorAlonso-Betanzos, Amparo
dc.date.accessioned2024-02-01T18:44:55Z
dc.date.available2024-02-01T18:44:55Z
dc.date.issued2019
dc.identifier.citationBolón-Canedo, V. and Alonso-Betanzos, A. (2019) ‘Ensembles for Feature Selection: A Review and Future Trends’, Information Fusion, 52, pp. 1–12. doi:10.1016/j.inffus.2018.11.008.es_ES
dc.identifier.issn1566-2535
dc.identifier.issn1872-6305
dc.identifier.urihttp://hdl.handle.net/2183/35335
dc.description© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Bolón-Canedo, V. and Alonso-Betanzos, A. (2019) ‘Ensembles for Feature Selection: A Review and Future Trends’ has been accepted for publication in: Information Fusion, 52, pp. 1–12. The Version of Record is available online at https://doi.org/10.1016/j.inffus.2018.11.008.es_ES
dc.description.abstract[Abstract]: Ensemble learning is a prolific field in Machine Learning since it is based on the assumption that combining the output of multiple models is better than using a single model, and it usually provides good results. Normally, it has been commonly employed for classification, but it can be used to improve other disciplines such as feature selection. Feature selection consists of selecting the relevant features for a problem and discard those irrelevant or redundant, with the main goal of improving classification accuracy. In this work, we provide the reader with the basic concepts necessary to build an ensemble for feature selection, as well as reviewing the up-to-date advances and commenting on the future trends that are still to be faced.es_ES
dc.description.sponsorshipThis research has been financially supported in part by the Spanish Ministerio de Economa y Competitividad (research project TIN 2015-65069-C2-1-R), by the Xunta de Galicia (research projects GRC2014/035 and the Centro Singular de Investigación de Galicia, accreditation 2016–2019, Ref. ED431G/01) and by the European Union (FEDER/ERDF).es_ES
dc.description.sponsorshipXunta de Galicia; GRC2014/035es_ES
dc.description.sponsorshipXunta de Galicia; ED431G/01es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2015-65069-C2-1-R/ALGORITMOS ESCALABLES DE APRENDIZAJE COMPUTACIONAL: MAS ALLA DE LA CLASIFICACION Y LA REGRESIONes_ES
dc.relation.urihttps://doi.org/10.1016/j.inffus.2018.11.008es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectEnsemble learninges_ES
dc.subjectFeature selectiones_ES
dc.titleEnsembles for feature selection: A review and future trendses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleInformation Fusiones_ES
UDC.volume52es_ES
UDC.startPage1es_ES
UDC.endPage12es_ES
dc.identifier.doi10.1016/j.inffus.2018.11.008
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvLaboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA)es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record