Show simple item record

dc.contributor.authorFernández Sáchez, Alberto
dc.contributor.authorRabuñal, Juan R.
dc.contributor.authorCebrián Rivero, Daniel
dc.contributor.authorPazos, A.
dc.contributor.authorGestal, M.
dc.contributor.authorCea, Luis
dc.date.accessioned2023-11-15T15:19:39Z
dc.date.available2023-11-15T15:19:39Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/2183/34239
dc.descriptionCursos e Congresos, C-155es_ES
dc.description.abstract[Abstract] Accurate prediction of inflow in dams plays a crucial role in water resource management Kim et al. (2019); Vargas-Garay et al. (2018); Zhong et al. (2018) and risk mitigation Costabile et al. (2020); Rabuñal et al. (2007). This study focuses on the Portodemouros dam (located between the provinces of A Coruña and Pontevedra), where a model based on a Long Short-Term Memory (LSTM) artificial neural network has been implemented to predict dam inflow. The results demonstrate the well-established effectiveness of the LSTM network in flow prediction Dongkyuna and Seokkoob (2021); Jo and Jung (2023); Li et al. (2020) applied to the Portodemouros dam compared to other models. This comparison has already been performed in other studies with both mathematical models Amirreza et al. (2022); Ansori and Anwar (2022); A.R1 et al. (2018); Beck et al. (2017); Ciabatta et al. (2016); Costabile et al. (2020); Fan et al. (2013); Hermanovsky et al. (2017); Kim et al. (2019); Vargas-Garay et al. (2018); Zhong et al. (2018), genetic programming Aytek et al. (2008); Havl´ıˇcek et al. (2013); Heˇrmanovsk´y et al. (2017); Rabuñal et al. (2007) and other machine learning algorithms Jo and Jung (2023). Combining precipitation data from multiple regions and meteorological forecasts significantly enhances the model’s ability to anticipate variations in dam inflow. This improved accuracy is essential for early flood detection and informed decision-making in dam operation. This study forms part of the Marine Science programme (ThinkInAzul) supported by Ministerio de Ciencia e Innovación and Xunta de Galicia with funding from European Union NextGenerationEU (PRTR-C17.I1) and European Maritime and Fisheries Fundes_ES
dc.language.isoenges_ES
dc.publisherUniversidade da Coruña, Servizo de Publicaciónses_ES
dc.relation.urihttps://doi.org/10.17979/spudc.000024.15
dc.rightsAttribution 4.0 International (CC BY 4.0)es_ES
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es*
dc.subjectPresa de Portodemouroses_ES
dc.subjectPredicción de caudaleses_ES
dc.subjectModelos matemáticoses_ES
dc.titlePredicting Inflow Flow in Hydraulic Dams Using Artificial Neural Networkses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
UDC.startPage91es_ES
UDC.endPage95es_ES
UDC.conferenceTitleVI Congreso Xove TIC: impulsando el talento científico. Octubre, 2023, A Coruñaes_ES
UDC.coleccionPublicacións UDCes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record