Show simple item record

dc.contributor.authorMosqueira-Rey, Eduardo
dc.contributor.authorHernández-Pereira, Elena
dc.contributor.authorAlonso Ríos, David
dc.contributor.authorBobes-Bascarán, José
dc.date.accessioned2022-07-14T18:01:31Z
dc.date.available2022-07-14T18:01:31Z
dc.date.issued2022
dc.identifier.citationEduardo Mosqueira-Rey, Elena Hernández Pereira, David Alonso-Ríos, and José Bobes-Bascarán. 2022. A classification and review of tools for developing and interacting with machine learning systems. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (SAC '22). Association for Computing Machinery, New York, NY, USA, 1092–1101. https://doi.org/10.1145/3477314.3507310es_ES
dc.identifier.urihttp://hdl.handle.net/2183/31187
dc.description.abstract[Abstract] In this paper we aim to bring some order to the myriad of tools that have emerged in the field of Artificial Intelligence (AI), focusing on the field of Machine Learning (ML). For this purpose, we suggest a classification of the tools in which the categories are organized following the development lifecycle of an ML system and we make a review of the existing tools within each section of the classification. We believe this will help to better understand the ecosystem of tools currently available and will also allow us to identify niches in which to develop new tools to aid in the development of AI and ML systems. After reviewing the state-of-the-art of the tools, we have identified three trends in them: the incorporation of humans into the loop of the machine learning process, the movement from ad-hoc and experimental approaches to a more engineering perspective and the ability to make it easier to develop intelligent systems for people without an educational background in the area, in order to move the focus from the technical environment to the domain-specific problem.es_ES
dc.description.sponsorshipThis work has been supported by the State Research Agency of the Spanish Government, grant (PID2019-107194GB-I00 / AEI / 10.13039/501100011033) and by the Xunta de Galicia, grant (ED431C 2018/34) with the European Union ERDF funds. We wish to acknowledge the support received from the Centro de Investigación de Galicia “CITIC”, funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014-2020 Program), by grant ED431G 2019/01es_ES
dc.description.sponsorshipXunta de Galicia; ED431C 2018/34es_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.language.isoenges_ES
dc.publisherAssociation for Computing Machineryes_ES
dc.relation.urihttps://doi.org/10.1145/3477314.3507310es_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectArtificial intelligencees_ES
dc.subjectMachine learninges_ES
dc.subjectToolses_ES
dc.titleA classification and review of tools for developing and interacting with machine learning systemses_ES
dc.typeconference outputes_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleProceedings of the ACM Symposium on Applied Computinges_ES
UDC.startPage1092es_ES
UDC.endPage1101es_ES
dc.identifier.doi10.1145/3477314.3507310
UDC.conferenceTitle37th ACM/SIGAPP Symposium on Applied Computinges_ES
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvLaboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA)es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record