Show simple item record

dc.contributor.authorVarela, Daniel
dc.contributor.authorSantos Reyes, José
dc.date.accessioned2022-06-28T14:23:47Z
dc.date.available2022-06-28T14:23:47Z
dc.date.issued2022
dc.identifier.citationVarela, D., Santos, J. Evolving cellular automata schemes for protein folding modeling using the Rosetta atomic representation. Genet Program Evolvable Mach 23, 225–252 (2022). https://doi.org/10.1007/s10710-022-09427-xes_ES
dc.identifier.urihttp://hdl.handle.net/2183/31017
dc.descriptionFinanciado para publicación en acceso aberto: Universidade da Coruña/CISUG es_ES
dc.description.abstract[Abstract] Protein folding is the dynamic process by which a protein folds into its final native structure. This is different to the traditional problem of the prediction of the final protein structure, since it requires a modeling of how protein components interact over time to obtain the final folded structure. In this study we test whether a model of the folding process can be obtained exclusively through machine learning. To this end, protein folding is considered as an emergent process and the cellular automata tool is used to model the folding process. A neural cellular automaton is defined, using a connectionist model that acts as a cellular automaton through the protein chain to define the dynamic folding. Differential evolution is used to automatically obtain the optimized neural cellular automata that provide protein folding. We tested the methods with the Rosetta coarse-grained atomic model of protein representation, using different proteins to analyze the modeling of folding and the structure refinement that the modeling can provide, showing the potential advantages that such methods offer, but also difficulties that arise.es_ES
dc.description.sponsorshipThis study was funded by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014-2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2019/03 and IN845D-02 (funded by the “Agencia Gallega de Innovación”, co-financed by Feder funds), and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Naturees_ES
dc.description.sponsorshipXunta de Galicia; ED431G 2019/01es_ES
dc.description.sponsorshipXunta de Galicia; ED431B 2019/03es_ES
dc.description.sponsorshipXunta de Galicia; IN845D-02es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.urihttps://doi.org/10.1007/s10710-022-09427-xes_ES
dc.rightsAtribución 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectProtein foldinges_ES
dc.subjectNeural cellular automataes_ES
dc.subjectDifferential evolutiones_ES
dc.titleEvolving Cellular Automata Schemes for Protein Folding Modeling Using the Rosetta Atomic Representationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitleGenetic Programming and Evolvable Machineses_ES
UDC.volume23es_ES
UDC.startPage225es_ES
UDC.endPage252es_ES
dc.identifier.doi10.1007/s10710-022-09427-x
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvInformation Retrieval Lab (IRlab)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116201GB-I00/ES/RAZONAMIENTO AUTOMATICO Y APRENDIZAJE CON INDUCCION DE CONOCIMIENTO/


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record