dc.contributor.author | Varela, Daniel | |
dc.contributor.author | Santos Reyes, José | |
dc.date.accessioned | 2022-06-28T14:23:47Z | |
dc.date.available | 2022-06-28T14:23:47Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Varela, D., Santos, J. Evolving cellular automata schemes for protein folding modeling using the Rosetta atomic representation. Genet Program Evolvable Mach 23, 225–252 (2022). https://doi.org/10.1007/s10710-022-09427-x | es_ES |
dc.identifier.uri | http://hdl.handle.net/2183/31017 | |
dc.description | Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG | es_ES |
dc.description.abstract | [Abstract] Protein folding is the dynamic process by which a protein folds into its final native structure. This is different to the traditional problem of the prediction of the final protein structure, since it requires a modeling of how protein components interact over time to obtain the final folded structure. In this study we test whether a model of the folding process can be obtained exclusively through machine learning. To this end, protein folding is considered as an emergent process and the cellular automata tool is used to model the folding process. A neural cellular automaton is defined, using a connectionist model that acts as a cellular automaton through the protein chain to define the dynamic folding. Differential evolution is used to automatically obtain the optimized neural cellular automata that provide protein folding. We tested the methods with the Rosetta coarse-grained atomic model of protein representation, using different proteins to analyze the modeling of folding and the structure refinement that the modeling can provide, showing the potential advantages that such methods offer, but also difficulties that arise. | es_ES |
dc.description.sponsorship | This study was funded by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014-2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2019/03 and IN845D-02 (funded by the “Agencia Gallega de Innovación”, co-financed by Feder funds), and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G 2019/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431B 2019/03 | es_ES |
dc.description.sponsorship | Xunta de Galicia; IN845D-02 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.uri | https://doi.org/10.1007/s10710-022-09427-x | es_ES |
dc.rights | Atribución 4.0 Internacional | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Protein folding | es_ES |
dc.subject | Neural cellular automata | es_ES |
dc.subject | Differential evolution | es_ES |
dc.title | Evolving Cellular Automata Schemes for Protein Folding Modeling Using the Rosetta Atomic Representation | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Genetic Programming and Evolvable Machines | es_ES |
UDC.volume | 23 | es_ES |
UDC.startPage | 225 | es_ES |
UDC.endPage | 252 | es_ES |
dc.identifier.doi | 10.1007/s10710-022-09427-x | |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Information Retrieval Lab (IRlab) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116201GB-I00/ES/RAZONAMIENTO AUTOMATICO Y APRENDIZAJE CON INDUCCION DE CONOCIMIENTO/ | |