Show simple item record

dc.contributor.authorNaveiro, Manuel
dc.contributor.authorRomero Gómez, Manuel
dc.contributor.authorArias-Fernández, Ignacio
dc.contributor.authorBaaliña Insua, Alvaro
dc.date.accessioned2022-01-12T15:02:41Z
dc.date.available2022-01-12T15:02:41Z
dc.date.issued2021-09-30
dc.identifier.citationManuel Naveiro, Manuel Romero Gómez, Ignacio Arias Fernández, Álvaro Baaliña Insua, Energy efficiency and environmental measures for Floating Storage Regasification Units, Journal of Natural Gas Science and Engineering, Volume 96, 2021, 104271, ISSN 1875-5100, https://doi.org/10.1016/j.jngse.2021.104271. (https://www.sciencedirect.com/science/article/pii/S1875510021004698)
dc.identifier.issn1875-5100
dc.identifier.urihttp://hdl.handle.net/2183/29364
dc.descriptionFinanciado para publicación en acceso aberto: Universidade da Coruña/CISUG
dc.description.abstract[Abstract] In view of the need to reduce greenhouse gas emissions from the maritime sector, this paper proposes design and operation indicators for the assessment of Floating Storage Regasification Unit (FSRU) energy efficiency and carbon footprint. Such indicators are applied to the study of five regasification systems: seawater system without recondenser (Case 0), seawater system (Case 1), open-loop propane system (Case 2), closed-loop water-glycol system (Case 3) and open-loop system with Organic Rankine Cycle (ORC) (Case 4). Of the regasification systems installed in FSRUs, Case 1 proves most energy efficient, closely followed by Case 2. If the cold energy of liquefied natural gas (LNG) were to be exploited in the regasification process, Case 4 would present an Energy Efficiency Design Index (EEDI) 41.25% lower than that of Case 1, whilst positioned at the opposite end of the scale is Case 3 with an EEDI of 347.98% higher. The Carbon Footprint Design Index (CFDI), in comparison with the EEDI, further includes emissions deriving from the methane slip from dual fuel engines and the CO2 capture ratio factor for the possible implementation of Carbon Capture and Storage (CCS) systems. In the cases analysed, the CFDI with a methane slip of 5.5 g/kWh represents an increase of 4–28% with regard to the EEDI.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.urihttps://doi.org/10.1016/j.jngse.2021.104271es_ES
dc.rightsAtribución 4.0 Internacionales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFloating storage regasification unites_ES
dc.subjectEnergy Efficiency Design Indexes_ES
dc.subjectEnergy Efficiency Operational Indicatores_ES
dc.subjectCarbon footprintes_ES
dc.subjectLiquefied natural gases_ES
dc.titleEnergy Efficiency and Environmental Measures for Floating Storage Regasification Unitses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessinfo:eu-repo/semantics/openAccesses_ES
UDC.journalTitleJournal of Natural Gas Science and Engineeringes_ES
UDC.volume96es_ES
UDC.startPage104271es_ES
dc.identifier.doi10.1016/j.jngse.2021.104271


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record