An Unsolicited Soliloquy on Dependency Parsing

View/ Open
Use this link to cite
http://hdl.handle.net/2183/28513
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 3.0 España
Collections
- Teses de doutoramento [2221]
Metadata
Show full item recordTitle
An Unsolicited Soliloquy on Dependency ParsingAuthor(s)
Directors
Gómez-Rodriguez, CarlosDate
2021Abstract
[Abstract]
This thesis presents work on dependency parsing covering two distinct lines of research. The
first aims to develop efficient parsers so that they can be fast enough to parse large amounts
of data while still maintaining decent accuracy. We investigate two techniques to achieve
this. The first is a cognitively-inspired method and the second uses a model distillation
method. The first technique proved to be utterly dismal, while the second was somewhat of
a success.
The second line of research presented in this thesis evaluates parsers. This is also done in
two ways. We aim to evaluate what causes variation in parsing performance for different
algorithms and also different treebanks. This evaluation is grounded in dependency displacements
(the directed distance between a dependent and its head) and the subsequent
distributions associated with algorithms and the distributions found in treebanks. This work
sheds some light on the variation in performance for both different algorithms and different
treebanks. And the second part of this area focuses on the utility of part-of-speech tags
when used with parsing systems and questions the standard position of assuming that they
might help but they certainly won’t hurt. [Resumen]
Esta tesis presenta trabajo sobre análisis de dependencias que cubre dos líneas de investigación distintas. La primera tiene como objetivo desarrollar analizadores eficientes, de
modo que sean suficientemente rápidos como para analizar grandes volúmenes de datos y,
al mismo tiempo, sean suficientemente precisos. Investigamos dos métodos. El primero se
basa en teorías cognitivas y el segundo usa una técnica de destilación. La primera técnica
resultó un enorme fracaso, mientras que la segunda fue en cierto modo un ´éxito.
La otra línea evalúa los analizadores sintácticos. Esto también se hace de dos maneras. Evaluamos
la causa de la variación en el rendimiento de los analizadores para distintos algoritmos
y corpus. Esta evaluación utiliza la diferencia entre las distribuciones del desplazamiento
de arista (la distancia dirigida de las aristas) correspondientes a cada algoritmo y corpus.
También evalúa la diferencia entre las distribuciones del desplazamiento de arista en los
datos de entrenamiento y prueba. Este trabajo esclarece las variaciones en el rendimiento
para algoritmos y corpus diferentes. La segunda parte de esta línea investiga la utilidad de
las etiquetas gramaticales para los analizadores sintácticos. [Resumo]
Esta tese presenta traballo sobre análise sintáctica, cubrindo dúas liñas de investigación. A
primeira aspira a desenvolver analizadores eficientes, de maneira que sexan suficientemente
rápidos para procesar grandes volumes de datos e á vez sexan precisos. Investigamos dous
métodos. O primeiro baséase nunha teoría cognitiva, e o segundo usa unha técnica de
destilación. O primeiro método foi un enorme fracaso, mentres que o segundo foi en certo
modo un éxito.
A outra liña avalúa os analizadores sintácticos. Esto tamén se fai de dúas maneiras. Avaliamos
a causa da variación no rendemento dos analizadores para distintos algoritmos e corpus. Esta
avaliaci´on usa a diferencia entre as distribucións do desprazamento de arista (a distancia
dirixida das aristas) correspondentes aos algoritmos e aos corpus. Tamén avalía a diferencia
entre as distribucións do desprazamento de arista nos datos de adestramento e proba.
Este traballo esclarece as variacións no rendemento para algoritmos e corpus diferentes. A
segunda parte desta liña investiga a utilidade das etiquetas gramaticais para os analizadores
sintácticos.
Keywords
Algoritmos-Informática
Tratamiento automático de las lenguas naturales
Redes neuronales (Informática)
Tratamiento automático de las lenguas naturales
Redes neuronales (Informática)
Rights
Atribución-NoComercial-CompartirIgual 3.0 España