Acceleration of a Feature Selection Algorithm Using High Performance Computing
Use este enlace para citar
http://hdl.handle.net/2183/26639
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
Metadatos
Mostrar o rexistro completo do ítemTítulo
Acceleration of a Feature Selection Algorithm Using High Performance ComputingData
2020-09-01Cita bibliográfica
Beceiro, B.; González-Domínguez, J.; Touriño, J. Acceleration of a Feature Selection Algorithm Using High Performance Computing. Proceedings 2020, 54, 54. https://doi.org/10.3390/proceedings2020054054
Resumo
[Abstract]
Feature selection is a subfield of data analysis that is on reducing the dimensionality of datasets, so that subsequent analyses over them can be performed in affordable execution times while keeping the same results. Joint Mutual Information (JMI) is a highly used feature selection method that removes irrelevant and redundant characteristics. Nevertheless, it has high computational complexity. In this work, we present a multithreaded MPI parallel implementation of JMI to accelerate its execution on distributed memory systems, reaching speedups of up to 198.60 when running on 256 cores, and allowing for the analysis of very large datasets that do not fit in the main memory of a single node.
Palabras chave
Feature selection
Mutual information
Machine learning
High performance computing
MPI
Mutual information
Machine learning
High performance computing
MPI
Versión do editor
Dereitos
Atribución 4.0 Internacional
ISSN
2504-3900