dc.contributor.author | López-Riobóo Botana, Iñigo Luis | |
dc.contributor.author | Eiras-Franco, Carlos | |
dc.contributor.author | Alonso-Betanzos, Amparo | |
dc.date.accessioned | 2020-10-21T17:31:11Z | |
dc.date.available | 2020-10-21T17:31:11Z | |
dc.date.issued | 2020-08-18 | |
dc.identifier.citation | Botana, I.L.-R.; Eiras-Franco, C.; Alonso-Betanzos, A. Regression Tree Based Explanation for Anomaly Detection Algorithm. Proceedings 2020, 54, 7. https://doi.org/10.3390/proceedings2020054007 | es_ES |
dc.identifier.issn | 2504-3900 | |
dc.identifier.uri | http://hdl.handle.net/2183/26501 | |
dc.description.abstract | [Abstract]
This work presents EADMNC (Explainable Anomaly Detection on Mixed Numerical and Categorical spaces), a novel approach to address explanation using an anomaly detection algorithm, ADMNC, which provides accurate detections on mixed numerical and categorical input spaces. Our improved algorithm leverages the formulation of the ADMNC model to offer pre-hoc explainability based on CART (Classification and Regression Trees). The explanation is presented as a segmentation of the input data into homogeneous groups that can be described with a few variables, offering supervisors novel information for justifications. To prove scalability and interpretability, we list experimental results on real-world large datasets focusing on network intrusion detection domain. | es_ES |
dc.description.sponsorship | This research was partially funded by European Union ERDF funds, Ministerio de Ciencia e Innovación
grant number PID2019-109238GB-C22, Xunta de Galicia through the accreditation of Centro Singular de
Investigación 2016-2020, Ref. ED431G/01 and Grupos de Referencia Competitiva, Ref. GRC2014/035 | es_ES |
dc.description.sponsorship | Xunta de Galicia; ED431G/01 | es_ES |
dc.description.sponsorship | Xunta de Galicia; GRC2014/035 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.uri | https://doi.org/10.3390/proceedings2020054007 | es_ES |
dc.rights | Atribución 4.0 Internacional | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | XAI | es_ES |
dc.subject | CART | es_ES |
dc.subject | Anomaly detection | es_ES |
dc.subject | Scalability | es_ES |
dc.subject | Distributed computing | es_ES |
dc.subject | Apache Spark | es_ES |
dc.title | Regression Tree Based Explanation for Anomaly Detection Algorithm | es_ES |
dc.type | conference output | es_ES |
dc.rights.accessRights | open access | es_ES |
UDC.journalTitle | Proceedings | es_ES |
UDC.volume | 54 | es_ES |
UDC.issue | 1 | es_ES |
UDC.startPage | 7 | es_ES |
dc.identifier.doi | 10.3390/proceedings2020054007 | |
UDC.conferenceTitle | 3rd XoveTIC Conference; A Coruña, Spain; 8–9 October 2020 | es_ES |
UDC.coleccion | Investigación | es_ES |
UDC.departamento | Ciencias da Computación e Tecnoloxías da Información | es_ES |
UDC.grupoInv | Laboratorio de Investigación e Desenvolvemento en Intelixencia Artificial (LIDIA) | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109238GB-C22/ES/APRENDIZAJE AUTOMATICO ESCALABLE Y EXPLICABLE | |