Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Tecnoloxía Electrónica e Comunicacións (GTEC)
  • GI-GTEC - Artigos
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Grupo de Tecnoloxía Electrónica e Comunicacións (GTEC)
  • GI-GTEC - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Prototype of EEG System for IoT

Thumbnail
View/Open
F.Laport_2020_A_Prototype_of_EEG_System_for_IoT.pdf (1.274Mb)
Use this link to cite
http://hdl.handle.net/2183/25671
Atribución 4.0
Except where otherwise noted, this item's license is described as Atribución 4.0
Collections
  • GI-GTEC - Artigos [109]
Metadata
Show full item record
Title
A Prototype of EEG System for IoT
Author(s)
Laport López, Francisco
Dapena, Adriana
Castro-Castro, Paula-María
Vázquez Araújo, Francisco Javier
Iglesia, Daniel I.
Date
2020-05-04
Citation
Laport, F., Dapena, A., Castro, P. M., Vazquez-Araujo, F. J., & Iglesia, D. (2020). A Prototype of EEG System for IoT. International Journal of Neural Systems, 2050018-2050018
Abstract
[Abstract] In this work, we develop open source hardware and software for eye state classification and integrate it with a protocol for the Internet of Things (IoT). We design and build the hardware using a reduced number of components and with a very low-cost. Moreover, we propose a method for the detection of open eyes (oE) and closed eyes (cE) states based on computing a power ratio between different frequency bands of the acquired signal. We compare several real- and complex-valued transformations combined with two decision strategies: a threshold-based method and a linear discriminant analysis. Simulation results show both classifier accuracies and their corresponding system delays.
Keywords
Electroencephalography
Internet of things
Prototypes
Signal processing
 
Editor version
https://doi.org/10.1142/S0129065720500185
Rights
Atribución 4.0
ISSN
1793-6462
0129-0657
 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback