Show simple item record

dc.contributor.authorHenry, Jason
dc.contributor.authorRodriguez, Alvaro
dc.contributor.authorWlodkowic​, Donald
dc.date.accessioned2019-09-26T14:45:21Z
dc.date.available2019-09-26T14:45:21Z
dc.date.issued2019-08-05
dc.identifier.citationHenry J, Rodriguez A, Wlodkowic D. 2019. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7:e7367 https://doi.org/10.7717/peerj.7367es_ES
dc.identifier.issn2167-8359
dc.identifier.issn2376-5992
dc.identifier.urihttp://hdl.handle.net/2183/23993
dc.description.abstract[Abstract] Chemobehavioural phenotypic analysis using small aquatic model organisms is becoming an important toolbox in aquatic ecotoxicology and neuroactive drug discovery. The analysis of the organisms’ behavior is usually performed by combining digital video recording with animal tracking software. This software detects the organisms in the video frames, and reconstructs their movement trajectory using image processing algorithms. In this work we investigated the impact of video file characteristics, video optimization techniques and differences in animal tracking algorithms on the accuracy of quantitative neurobehavioural endpoints. We employed larval stages of a free-swimming euryhaline crustacean Artemia franciscana,commonly used for marine ecotoxicity testing, as a proxy modelto assess the effects of video analytics on quantitative behavioural parameters. We evaluated parameters such as data processing speed, tracking precision, capability to perform high-throughput batch processing of video files. Using a model toxicant the software algorithms were also finally benchmarked against one another. Our data indicates that variability in video file parameters; such as resolution, frame rate, file containers types, codecs and compression levels, can be a source of experimental biases in behavioural analysis. Similarly, the variability in data outputs between different tracking algorithms should be taken into account when designing standardized behavioral experiments and conducting chemobehavioural phenotyping.es_ES
dc.language.isoenges_ES
dc.publisherPeerJ, Ltd.es_ES
dc.relation.urihttps://doi.org/10.7717/peerj.7367es_ES
dc.rightsAtribución 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectAnimal behaviores_ES
dc.subjectZoologyes_ES
dc.subjectEcotoxicologyes_ES
dc.subjectTrackinges_ES
dc.subjectVideoes_ES
dc.subjectToxicityes_ES
dc.subjectPhenomicses_ES
dc.titleImpact of Digital Video Analytics on Accuracy of Chemobehavioural Phenotyping in Aquatic Toxicologyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
UDC.journalTitlePeerJes_ES
UDC.volume7es_ES
dc.identifier.doi10.7717/peerj.7367
UDC.coleccionInvestigaciónes_ES
UDC.departamentoCiencias da Computación e Tecnoloxías da Informaciónes_ES
UDC.grupoInvRedes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)es_ES
UDC.institutoCentroCITIC - Centro de Investigación de Tecnoloxías da Información e da Comunicaciónes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record