Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Congresos, conferencias, etc.
  • View Item
  •   DSpace Home
  • 1. Investigación
  • Grupos de investigación
  • Redes de Neuronas Artificiais e Sistemas Adaptativos -Informática Médica e Diagnóstico Radiolóxico (RNASA - IMEDIR)
  • GI-RNASA - Congresos, conferencias, etc.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Peptide Vascularization Inhibitory Activity in Tumor Tissue as a Possible Target for Cancer Treatment

Thumbnail
View/Open
J.Liñares-Blanco_2019_Prediction_of_Peptide_Vascularization_Inhibitory_Activityin_Tumor_Tissue_as_a_Possible_Target_for_Cancer.pdf (577.8Kb)
Use this link to cite
http://hdl.handle.net/2183/23950
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • GI-RNASA - Congresos, conferencias, etc. [34]
Metadata
Show full item record
Title
Prediction of Peptide Vascularization Inhibitory Activity in Tumor Tissue as a Possible Target for Cancer Treatment
Author(s)
Liñares Blanco, José
Fernández-Lozano, Carlos
Date
2019-07-31
Citation
Liñares-Blanco, J.; Fernandez-Lozano, C. Prediction of Peptide Vascularization Inhibitory Activity in Tumor Tissue as a Possible Target for Cancer Treatment. Proceedings 2019, 21, 15.
Abstract
[Abstract]The prediction of metabolic activities in silico form is crucial to be able to address all research possibilities without exceeding the experimental costs. In particular, for cancer research, the prediction of certain activities can be of great help in the discovery of different treatments. In this work it has been proposed to predict, through Machine Learning, the anti-angiogenic activity of peptides is currently being used in cancer treatment and is giving hopeful results. From a list of peptide sequences, three types of molecular descriptors were obtained (AAC, DC and TC) that offered the possibility of training different ML algorithms. After a Feature Selection process, different models were obtained with a predictive value that surpassed the current state of the art. These results shown that ML is useful for the classification and prediction of the activity of new peptides, making experimental screening cheaper and faster.
Keywords
Machine learning
Feature selection
Activity prediction
Peptides
Cancer
Screening
 
Editor version
https://doi.org/10.3390/proceedings2019021015
Rights
Atribución 3.0 España
ISSN
2504-3900

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback