Search
Now showing items 1-10 of 24
Prediction of Breast Cancer Proteins Involved in Immunotherapy, Metastasis, and RNA-Binding Using Molecular Descriptors and Artifcial Neural Networks
(Springer Nature, 2020-05-22)
[Abstract]
Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression
deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental
determinants are involved. ...
General machine learning model, review, and experimental-theoretic study of magnolol activity in enterotoxigenic induced oxidative stress
(Bentham Science, 2017)
[Abstract] This study evaluated the antioxidative effects of magnolol based on the mouse model induced by Enterotoxigenic Escherichia coli (E. coli, ETEC). All experimental mice were equally treated with ETEC suspensions ...
Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds
(American Chemical Society, 2020-10-14)
[Abstract]
Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple ...
OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine
(Springer Nature, 2020-03-24)
[Abstract]
Breast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic ...
Improvement of Epitope Prediction Using Peptide Sequence Descriptors and Machine Learning
(MDPI, 2019)
[Abstract] In this work, we improved a previous model used for the prediction of proteomes as new
B-cell epitopes in vaccine design. The predicted epitope activity of a queried peptide is based on its
sequence, a known ...
SNOMED2HL7: a tool to normalize and bind SNOMED CT concepts to the HL7 Reference Information Model
(Elsevier, 2017-10)
[Abstract] BACKGROUND: Current clinical research and practice requires interoperability among systems in a complex and highly dynamic domain. There has been a significant effort in recent years to develop integrative common ...
Bio-AIMS collection of chemoinformatics web tools based on molecular graph information and artificial intelligence models
(Bentham, 2015-09-01)
[Abstract] The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction ...
Experimental study and random forest prediction model of microbiome cell surface hydrophobicity
(Elsevier, 2016-11-09)
[Abstract] The cell surface hydrophobicity (CSH) is an assessable physicochemical property used to evaluate the microbial adhesion to the surface of biomaterials, which is an essential step in the microbial biofilm formation ...
Net-Net AutoML Selection of Artificial Neural Network Topology for Brain Connectome Prediction
(MDPI, 2020-02-14)
[Abstract]
Brain Connectome Networks (BCNs) are defined by brain cortex regions (nodes) interacting with others by electrophysiological co-activation (edges). The experimental prediction of new interactions in BCNs ...