Search
Now showing items 1-10 of 24
Prediction of Breast Cancer Proteins Involved in Immunotherapy, Metastasis, and RNA-Binding Using Molecular Descriptors and Artifcial Neural Networks
(Springer Nature, 2020-05-22)
[Abstract]
Breast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression
deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental
determinants are involved. ...
General machine learning model, review, and experimental-theoretic study of magnolol activity in enterotoxigenic induced oxidative stress
(Bentham Science, 2017)
[Abstract] This study evaluated the antioxidative effects of magnolol based on the mouse model induced by Enterotoxigenic Escherichia coli (E. coli, ETEC). All experimental mice were equally treated with ETEC suspensions ...
Carbon nanotubes’ effect on mitochondrial oxygen flux dynamics: polarography experimental study and machine learning models using star graph trace invariants of Raman spectra
(MDPI, 2017-11-11)
[Abstract] This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass flux (Jm) under three experimental conditions. New experimental results and a new methodology are reported for the first ...
SNOMED2HL7: a tool to normalize and bind SNOMED CT concepts to the HL7 Reference Information Model
(Elsevier, 2017-10)
[Abstract] BACKGROUND: Current clinical research and practice requires interoperability among systems in a complex and highly dynamic domain. There has been a significant effort in recent years to develop integrative common ...
Gene prioritization, communality analysis, networking and metabolic integrated pathway to better understand breast cancer pathogenesis
(Nature, 2018-11-12)
[Abstract] Consensus strategy was proved to be highly efficient in the recognition of gene-disease association. Therefore, the main objective of this study was to apply theoretical approaches to explore genes and communities ...
Automatic Assessment of Alzheimer’s Disease Diagnosis Based on Deep Learning Techniques
(Elsevier, 2020-05)
[Abstract]
Early detection is crucial to prevent the progression of Alzheimer’s disease (AD). Thus, specialists can begin preventive treatment as soon as possible. They demand fast and precise assessment in the diagnosis ...
Experimental and computational studies of fatty acid distribution networks
(Royal Society of Chemistry, 2015-08-06)
[Abstract] Unbalanced uptake of Omega 6/Omega 3 (ω-6/ω-3) ratios could increase chronic disease occurrences, such as inflammation, atherosclerosis, or tumor proliferation, and methylation methods for measuring the ruminal ...
Net-net Auto machine learning (AutoML) prediction of complex ecosystems
(Nature, 2018-08-17)
[Abstract] Biological Ecosystem Networks (BENs) are webs of biological species (nodes) establishing trophic relationships (links). Experimental confirmation of all possible links is difficult and generates a huge volume ...
A methodology for the design of experiments in computational intelligence with multiple regression models
(Peer J, 2016-12-01)
[Abstract] The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the ...
Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds
(American Chemical Society, 2020-10-14)
[Abstract]
Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple ...