Browsing by Author "Bonillo Martínez, Juan José"
Now showing items 1-6 of 6
-
A 2D numerical model for the transport of pollutants. The influence of Boundary Conditions
Bonillo Martínez, Juan José; Fe, Jaime; Vellando, Pablo; Puertas, Jerónimo (Utah State University Extension, 1999)[Abstract] The pollutants transport phenomena in a 2D unsteady free surface flow has been studied. The weighted residual method has been used for the integration of the transport equations, appying the Galerkin formulation ... -
A Finite element formulation for the resolution of the unsteady incompressible viscous flow for low Reynolds numbers
Vellando, Pablo; Puertas, Jerónimo; Bonillo Martínez, Juan José; Fe, Jaime (International Association for Hydraulic Research, 1999)[Abstract] The following paper shows a Finite Element formulation for the resolution of the local and convective acceleration terms including- Navier-Stokes equations, which gives analytical response to the problem of ... -
Finite element solution of the Navier-Stokes equation using a SUPG formulation
Vellando, Pablo; Puertas, Jerónimo; Bonillo Martínez, Juan José; Fe, Jaime (Tech Science, 2000) -
Finite element solution of the Navier-Stokes equations using a SUPG formulation
Vellando, Pablo; Puertas, Jerónimo; Bonillo Martínez, Juan José; Fe, Jaime (Universidad de Zaragoza, 1999) -
Una formulación en elementos finitos para la resolución del flujo viscoso incompresible no permanente
Vellando, Pablo; Puertas, Jerónimo; Bonillo Martínez, Juan José; Fe, Jaime (Sociedad Española de Métodos Numéricos en Ingeniería, 1999)[Resumen] Se expone en este trabajo el resultado de la elaboración de un código, que basado en el método de los elementos finitos, resuelve la ecuación de Navier–Stokes en un dominio bidimensional, para condiciones iniciales ... -
On the resolution of the viscous incompressible flow for various SUPG finite element formulations
Vellando, Pablo; Puertas, Jerónimo; Bonillo Martínez, Juan José; Fe, Jaime (The International Center of Numerical Methods in Engineering, 2000)[Abstract] A Finite Element based program has been released to solve the steady 2D Navier- Stokes equations. The mixed-variable algorithm is used as a first approach to solve the differential problem. In order to reduce ...