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Abstract.

The problem of predicting a future value of a time series is considered in this

paper. If the series follows a stationary Markov process, this can be done

by nonparametric estimation of the autoregression function. Two forecasting

algorithms are introduced. They only differ in the nonparametric kernel-type

estimator used: the Nadaraya-Watson estimator and the local linear estimator.

There are three major issues in the implementation of these algorithms: selec-

tion of the autoregressor variables; smoothing parameter selection and com-

puting prediction intervals. These have been tackled using recent techniques

borrowed from the nonparametric regression estimation literature under depen-

dence. The performance of these nonparametric algorithms has been studied

by applying them to a collection of 43 well-known time series. Their results

have been compared to those obtained using classical Box-Jenkins methods.

Finally, the practical behaviour of the methods is also illustrated by a detailed

analysis of two data sets.

Keywords: Box-Jenkins, bootstrap, dependent data, kernel regression estimation,

local linear estimation.

1 Introduction

One of the most important problems in time series analysis is prediction of future ob-

servations. Namely, given the observed series Z1, Z2, . . . , Zn, the aim is to predict the

unobserved value Zn+l, for some integer l ≥ 1. A standard way to look at this problem is

to consider that the series follows an autoregressive process of the form

Zt = m (Zt−1, Zt−2, . . .) + εt,

1This work has been partially supported by the Xunta de Galicia Grants PGIDT01PXI10505PR and

PGIDT03PXIC10505PN and the MCyT Grant BMF2002-00265 (ERDF support included).
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where εt is the error process, assumed to be independent of the past of Zt, i.e., Zt−1, Zt−2, . . ..

It is clear then that the first task is to estimate the function m (·).
The classical approach to this problem is to find some parametric estimate of the

autoregression function. More specifically, it is assumed that m (·) belongs to a class of
functions, only depending on a finite number of parameters to be estimated. This is the

case of the very well-known ARIMA models, widely studied in the literature (see, for

instance, Box & Jenkins (1976), Brockwell & Davis (1987) and Makridakis et al (1998)).

This problem can also be undertaken with a nonparametric view, without any assumption

on the functional form of m (·). This is a much more flexible approach that only imposes
regularity conditions on the autoregression function.

Nonparametric methods for forecasting in time series can be viewed, up to a certain

extent, as a particular case of nonparametric regression estimation under dependence.

Some significant papers in this field are those by Györfi et al (1989), Härdle & Vieu

(1992), Hart (1991), Masry & Tjostheim (1995), Hart (1996), Härdle et al (1997), Härdle

et al (1998) and Bosq (1998), among many others.

In this paper two algorithms are proposed for the problems of pointwise forecasting

and finding prediction intervals for a future value of a time series using nonparametric

kernel-type estimators: the Nadaraya-Watson estimator and the local linear estimator.

These algorithms address three important issues related to this problem. These are the

selection of the autoregressor variables, the smoothing parameter selection and the way of

computing the prediction based on the pointwise forecasts.

The rest of the paper is organized as follows. The mathematical formulation of the

nonparametric prediction problem is presented in Section 2. Section 3 contains the details

about the nonparametric prediction algorithms proposed in the paper. A comparative

empirical study of the new method and the classical Box-Jenkins approach is included

in Section 4, which also contains the detailed analysis of two case studies. Section 5 is

devoted to the conclusions. Finally, the basic features of the 43 time series considered in

this study are reported in the Appendix.

2 Formulation of the problem

Let us consider a strictly stationary univariate time series {Zt : t ∈ Z}. We assume that
the series has been observed in the time interval 1 ≤ t ≤ n. The series is assumed to follow

a Markov model of the form

Zt = m(Zt−i1 , Zt−i2 , . . . , Zt−ip) + εt (1)

where m (�u) = E(Zt/(Zt−i1 , Zt−i2 , . . . , Zt−ip) = �u) with �u ∈Rp, 0 < i1 < i2 < . . . < ip
and {εt} is the error process, assumed to be independent on the past of Zt and with zero

conditional mean with respect to this past.

In order to predict Zt+1 we consider the data
n³

�Xj , Yj

´
: j ∈ Z

o
, with values in

Rp × R = Rp+1, where �Xj = (Zj+ip−i1 , Zj+ip−i2, . . . , Zj) and Yj = Zj+ip . In other
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terms, we move from the observed time series data {zt : 1 ≤ t ≤ n} to the regression
data {(�xj , yj) : 1 ≤ j ≤ n0 = n− ip}. The “new” data can be directly used to estimate
the autoregression function m (·).

It is straight forward to derive from (1) the unobservable best predictor of Zt+1 in the

sense of mean squared prediction error. Some observable version of this predictor is

m̂(�xn−ip+1) = m̂(zn+ip−i1 , zn+ip−i2 , . . . , zn),

where m̂ is an estimator of m. Nonparametric regression estimation has several advantages

over classical parametric methods in this context. It is a more flexible approach and

can be very well adapted to local features, which is very important in forecasting. The

generalization to the problem of predicting Zt+l (with l ≥ 1) is straightforward, although
presents an additional computational cost. After deciding the autoregressor variables that

will play a role in this prediction problem the new sample {(�xj , yj)} has to be redefined
with an horizon of l instants ahead.

An alternative procedure consists in using a recursive algorithm. To do this, the one-

instant ahead pointwise prediction of Zn+1 is obtained as detailed above. This will be

denoted by Ẑn(1). Now this prediction is inserted in the time series sample:n
Z1, Z2, . . . , Zn, Ẑn(1)

o
in order to predict Zn+2 one-instant ahead. This process is recursively repeated until

the horizon prediction, l, is reached. This method is typically much less time consuming,

since the selection of the autoregressor variables has to be done only once. On the other

hand its performance is strongly based on the good quality of the first one-instant ahead

predictions.

Thus, the basic problem for predicting Zn+1 is finding some estimator m̂ (�u), with

�u = �xn−ip+1, in a dependence context. Usual nonparametric estimators of m (�u) are of

the general form

m̂ (�u) =
n0X
j=1

W
¡
�u, �xj

¢
yj (2)

where W
¡
�u, �xj

¢
are some smoothing positive weights with high values if �u is close to �xj

and values close to zero otherwise. Two different types of nonparametric kernel estimators

are used in this paper. The first one is the Nadaraya-Watson estimator, m̂h,NW (�u), with

weights

WH,NW

¡
�u, �xj

¢
=

KH (�xj−�u)Pn0
i=1 KH (�xi−�u)

,

where H is a symmetric positive definite p × p matrix, called the bandwidth matrix.

This matrix contains the information about the amount of smoothing introduced in the

nonparametric estimator. The function K is a p−variate kernel function and

KH(�v) = |H|−1/2 K
³

H−1/2�v
´
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is the multivariate rescaling of K using the linear transformation given by H.

In the following, only diagonal bandwidth matrices of the form H = diag{h, . . . , h}
will be considered, where h is one-dimensional bandwidth. A general product kernel:

K(�v) = upt=1K (vt) will be used, where K (v) is a symmetric univariate kernel. Using the

notation Kh (v) =
1
hK

¡
v
h

¢
it is straight forward to conclude

WH,NW

¡
�u, �xj

¢
=

Qp
t=1 Kh (xjt − ut)Pn0

i=1

Qp
t=1 Kh (xit − ut)

. (3)

Consequently, with this kind of kernel and bandwidth matrix, the Nadaraya-Watson kernel

estimator is given by

m̂NW,h (�u) =

Pn0
j=1 (

Qp
t=1 Kh (xjt − ut)) yjPn0

i=1

Qp
t=1 Kh (xit − ut)

. (4)

Different properties of the Nadaraya-Watson estimator have been proved for the ran-

dom design case in the context of dependence. Among many other authors we mention

Györfi et al (1989), Härdle & Vieu (1992) and Masry & Tjostheim (1995). In most of

the existing literature it is assumed that the observations satisfy some asymptotic inde-

pendence condition, like the α−mixing condition. This is a relatively weak assumption
which is satisfied by many different kinds of stochastic processes (see Doukhan (1994) for

a detailed study of this condition).

Another kernel type estimator is the local polynomial regression estimator that has

gained wide acceptance as an attractive method for estimating the regression function and

its derivatives. Some of its advantages are the better boundary behaviour, its adaptation

to estimate regression derivatives, its easy computation and its good minimax properties,

among others. This estimator is obtained by fitting locally to the data a polynomial of

degree d, using weighted least squares. More specifically, the local polynomial estimator

of m (�u) is defined as the value, β0, that minimizes

n0X
i=1

Ã
yi −

Ã
dX

t=0

β0 (xit − ut)

!!2

Kh (�xi−�u)

where Kh (�v) = h−p upt=1 K (vt/h).

In the particular case of d = 1 the local linear estimator is obtained

m̂h,LL (�u) = �et1
¡
Xt

uWuXu

¢−1
Xt

uWuY, (5)

where �e1 is the (d+1)×1 vector having 1 in the first entry and zero elsewhere,Y =(y1, . . . , yn0)t

is the vector of responses,

Xu =

⎛⎜⎝ 1 (�x1−�u)t
...

...

1 (�xn0−�u)t

⎞⎟⎠
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is the n0× (d+ 1) design matrix and

Wu = diag {Kh (�u− �x1) , . . . ,Kh (�u− �xn0)}

is an n0 × n0 diagonal matrix of weights.
A detailed study of the properties of this estimator can be found in the book by Fan &

Gijbels (1996). The papers by Masry (1996), Masry & Fan, (1997) and Härdle et al (1998)

present similar theory for the local linear estimator under dependence. The results given

by these authors show that, under α−mixing conditions, the nonparametric regression
estimators exhibit the same asymptotic properties as for the independence case. This is

due to the fact that the dependence do not affect the bias of the estimator and only affects

second order terms of its variance.

For the sake of simplicity, in the rest of the paper it will be assumed that the time series

is stationary. If this is not the case, we will assume that the series can be decomposed as

follows:

Zt = µ(t) + �t,

where at is a stationary series and the function f(·) is just the trend. Of course, this
trend may be also estimated nonparametrically from the sample {(t, Zt)}nt=1 in the context

of fixed design. In this general case, after estimating the trend, the procedures that

will be explained below for a stationary series, as �t, can be used for �̂t = Zt − µ̂(t),

t = 1, 2, . . . , n. Some references on the problem of kernel estimation of µ(·) with fixed
design, under dependence, are Hart (1991), Opsomer et al (2001), Francisco-Fernández &

Vilar-Fernández (2001, 2003) and Vilar-Fernández & Francisco-Fernández (2002), among

many others.

3 Nonparametric forecasts

As pointed out in the introduction, there are three main issues to deal with in order to

perform some nonparametric forecast. These will be addressed in this section.

3.1 Selection of the autoregressor variables

In order to apply any of the nonparametric prediction methods in the preceding section one

has to determine first the collection of autoregressor variables to be used. More specifically,

a vector, (Zt−i1 , Zt−i2 , . . . , Zt−ip), with the variables that contain relevant information on
Zt, has to be selected. This is equivalent to select the lags: i1, . . . , ip, pertaining to these

regressors. This is a very crucial point due to the so-called curse of dimensionality in

nonparametric regression estimation. Essentially, for a large number of regressors, the

estimator becomes very inefficient unless the sample size is very large. For this reason,

the number of regressor variables should not be too large.

There exist several proposals to solve this problem. Thus, Vieu (1994) and Yao & Tong

(1994) suggested different methods based on cross-validation, while Tjostheim & Auestad
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(1994) and Tscherning & Yang (2000) proposed to use a nonparametric version of the final

prediction error (FPE) criterion. The procedure by Tjostheim & Auestad (1994) will be

adopted here. It is based on the idea of doing a sequence of searches. In each search a

new lag is determined, with the lags found in the previous scans held fixed.

More precisely, let Ω1
s be a general subset with a single regressor {Zt−s}. Now, the

final prediction error is computed

FPE(Ωps) =
1

n0

n0X
j=1

(yj − m̂ (�xj))
2 1 + (nhp)−1 JpBp

1− (nhp)−1 (2Kp(0)− Jp)
Bp (6)

where J =
R
K2(u)du, p is the number of lags (at the first step p = 1), h is the univariate

bandwidth and

Bp =
1

n0

n0X
i=1

f̂ (�xi)
−1 =

n0X
i=1

n0X
j=1

Ã
pY

t=1

Kh (xjt − xit)

!

with f̂ (�u) the Parzen-Rosenblatt kernel estimator of the p−dimensional density function.
Now the set Ω1

s that minimizes the function FPE(Ω1
s) is selected. En the second step we

consider all the subsets with two lags, one of which has been selected in the previous step.

With these two-lag subsets the same procedure as in the first step is used to determine

the optimal subset. Subsequent subsets with an increasing number of lags are considered

in the next steps and the whole process is stopped when a new step do not decreases the

optimal value of FPE.

3.2 Selection of the smoothing parameter

As in nonparametric curve estimation, the problem of selecting the bandwidth, h, also

appears in this prediction context. It is very well-known that a large bandwidth would give

oversmoothed estimations, with a large bias. On the other hand, if the bandwidth is too

small, the estimation becomes undersmoothed and the its variance gets large. There are

plenty of papers that have dealt with the problem of bandwidth selection for independent

data, but, under dependence, this problem has been much less studied. In general, there

are three different types of methods. The first class is formed by the plug-in methods. They

are based on the idea of obtaining the bandwidth that minimizes some estimation of the

asymptotic mean integrated squared error of the estimator (or some other global or local

error measure). Their performance is good in the fixed design case but much worse in the

random design case under dependence (see Francisco-Fernández & Vilar-Fernández (2001)

and Francisco-Fernández et al (2003)). A second collection of methods are those based on

the bootstrap (see Hall et al (1995) for some bandwidth selector in the regression setup

under dependence and Cao (1999) for an overview of bootstrap methods in the time series

context). These bootstrap methods have been also more studied in the fixed design setup.

Finally, we mention the cross-validation methods, adapted to the presence of dependence

(see Härdle & Vieu (1992) for the strong mixing setup and Chu & Marron (1991) and Yao

& Tong (1998) for other contexts).
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The bandwidth selector that will be used for the two prediction algorithms proposed

in this paper is the cross-validation method. The bandwidth is chosen as h = hCV , which

minimizes the following cross-validation function

CV (h) =
1

n0

n0X
j=1

(yj − m̂h,j (�xj))
2 ω (�xj) (7)

where m̂h,j (�xj) is the nonparametric estimator of m (�xj), using the smoothing parameter

h and all the sample except the 2l+ 1 observations {(�xi, yi) : j − l ≤ i ≤ j + l}. The idea
is to get rid of the influence (caused by the dependence) of neighbour observations in time.

Finally ω (�u) is a suitable weight function.

When using the cross-validation bandwidth selector it is very important to know if the

aim is to estimate the regression function in a whole region, typically a compact interval

(global cross-validation), or just to estimate that function at a single point (local cross-

validation). Both types of cross-validation bandwidths are needed in our procedure. The

global cross-validation bandwidth will be used to compute the nonparametric residuals,

which will be needed to obtain the prediction interval. The global bandwidth will be also

needed in the algorithm for selecting the autoregressor variables, presented in the previous

subsection. This global cross-validation bandwidth, hGCV , is obtained by minimizing

the function CV (h), using the weights ω (�xj) = 1, for every j. On the other hand,

pointwise forecasting, in time series, is a local problem. The proposed algorithms predict

the future value Zn+1 using m̂ (�u) with �u = �xn−ip+1 = (zn+ip−i1, zn+ip−i2 , . . . , zn) and a
local bandwidth, hLCV , will be used for this. The value hLCV will be obtained as the

minimizer of CV (h) with weight function

ω (�xj) = ω (�xj, �u) =

pY
t=1

Φ

µ
xjt − xt
0.2σZ

¶
,

where Φ(u) is the standard normal density function and σZ is the standard deviation of

the time series.

3.3 Prediction intervals

We consider two different methods to construct prediction intervals. The first one is based

in bootstrapping the residuals, while the second uses some estimation of the conditional

distribution.

Residual-based bootstrap intervals

Using the sample {(�xj, yj) : 1 ≤ j ≤ n0} and the bandwidth hGCV the nonparametric

residuals are computed

ε̂j = yj − m̂ (�xj) , j = 1, . . . , n0,

where m̂ (�u) is either the Nadaraya-Watson or the local linear estimator of the regression

function. Let us denote by sε the sample standard deviation of the ε̂j . Now, the smoothing
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parameter

g =

µ
4

3n0

¶1/5

sε

will be used to compute the smoothed bootstrap residuals

ε̂∗i = ε̂Ii + gξi, i = 1, . . . , B,

where Ii is a discrete random variable with uniform distribution in {1, . . . , n0}, ξi is a
standard normal random variable and B is the number of bootstrap replications, typically

of the order of hundreds or thousands. Once computed the bootstrap residuals, they

are sorted:
n
ε̂∗(i) : i = 1, . . . , B

o
and those with orders [(α/2)B] and [(1− (α/2))B] are

considered. Thus ³
m̂ (�u) + ε̂∗[(α/2)B], m̂ (�u)− ε̂∗[(1−(α/2))B]

´
(8)

is the prediction interval pertaining to the level 1− α.

Prediction intervals based on the conditional distribution

A second method is proposed to compute prediction intervals. It is based on the

estimation of the conditional distribution function of Yj/�Xj = �xn−ip+1. For a given y, the

conditional distribution function can be viewed as a regression function

F (y/�Xj = �u) = E
³
1{Yj≤y}/�Xj = �u

´
.

Thus the sample {(�xj, yj) : 1 ≤ j ≤ n0} can be used to estimate this regression function
using the Nadaraya-Watson or the local linear methods proposed in Section 2. Let us

denote by F̂ (y/�u) the nonparametric estimator of F (y/�u). Now, the 1 − α prediction

interval is (L,U), where the values L and U are such that

F̂ (L/�u) =
α

2
and F̂ (U/�u) = 1− α

2
. (9)

4 A comparative study

A total number of 43 time series have been analyzed. Most of them are very well-known

series from the books of Box & Jenkins (1976), Brockwell & Davis (1987), Abraham &

Ledolter (1983), Pankratz (1983), Makridakis et al (1998) and Tong (1990). The forecasts

are computed using three different methods: a parametric ARIMA fit, the nonparametric

Nadaraya-Watson estimator and the local linear procedure. The majority of the 43 series

are stationary or seasonally stationary. In the few rest of the cases, the original time series

has been differentiated before applying the prediction techniques. After differentiating, if

needed, the series can be classified in seasonal and nonseasonal, with seasonal lag 12. The

forecasting horizons considered for the nonseasonal series were 1, 2, . . . , 8, while, for the

seasonal series were 1, 2, . . . , 12, i.e., the whole seasonal period. The last 12 or 8 values of

the series (depending on the fact that the series is seasonal or not) were not used in the
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forecasting algorithms. The were only used to evaluate the performance of the prediction

methods.

The 43 series were also classified according to their linearity. A simple test by McLeod

& Li (1983) has been used to this aim. The method consists of applying Portmanteau test

for linearity based on the sample autocorrelation of the squared residuals of an ARMA fit

(see Chapter 5 of Tong (1990)). A summary with the number of linear and nonlinear time

series according to their seasonality features and their sample sizes is included in Tables

1 and 2.

Linear Nonlinear Total

Nonseasonal 21 11 32

Seasonal 9 2 11

Total 30 13 43
Table 1. Number of series within every seasonality—linearity category.

Sample size Linear Nonlinear Total

(50, 100) 16 2 18

[100, 150) 6 7 13

[150, 200) 6 1 7

[200, 261] 2 3 5
Table 2. Number of series within every size—linearity category.

4.1 Description of the study

As commented above, an ARMA model has been fit to the 43 series. In most of the

cases the model used was that proposed in the book where the series appears (see the

Appendix). However there are a few cases for which a different model has been selected,

according to minimize the residual variance, to obtain no significative autocorrelations and

partial autocorrelations and to obtain significative parameters in the fitted model. The

fitted ARMA model was used to compute pointwise forecasts and 95% prediction intervals

up to an horizon of 12 or 8 lags, for seasonal and nonseasonal series, respectively.

For every series, the nonparametric forecasts have been obtained using the Nadaraya-

Watson and the local linear estimators given in (4) and (5). The standard normal density

function has been considered as kernel function and the autoregressor variables have been

selected according to the algorithm proposed by Tjostheim & Auestad (1994), presented

in Subsection 3.1. The smoothing parameter has been computed using the cross-validation

criterion of Subsection 3.2. Its global version is used to compute the residuals while the

local cross-validation bandwidth is utilized to compute the nonparametric forecasts.

The nonparametric forecasts have been computed by means of two different procedures:

• Direct method. For every lag, l, the autoregressor variables are selected, the

associated sample is computed and the prediction is obtained using the Nadaraya-

Watson or the local linear estimators.
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• Recursive method. Fix some lag l > 1. The one-lag ahead forecast (l = 1) is

obtained using the direct method. This prediction is incorporated to the sample

as a new artificial datum. Then, the direct method (with l = 1) is applied to

this extended sample to obtain the pointwise forecast for l = 2. This procedure is

recursively repeated as many times as needed.

The recursive method is computationally less time consuming than the direct one,

since the selection of the autoregression variables has to be done only once. However, the

major drawback of the recursive method is that the forecasts depend very much on the

forecasts obtained in previous steps.

In summary, for every time series a total number of pointwise forecasts have been ob-

tained, according to the use of the direct or the recursive method and to the nonparametric

estimator used (Nadaraya-Watson or local linear).

For any of the two direct nonparametric forecasts, two type of prediction intervals have

been obtained according to the methods presented in Subsection 3.3. The first one uses the

nonparametric residuals, ε̂j = yj − m̂h (�xj), where the smoothing parameter is the global

cross-validation bandwidth and the number of bootstrap replications was B = 1000. The

second method is based on the estimation of the conditional distribution function. The

secant method was used to numerically solve the two equations in (9).

4.2 Results

In order to compare the performance of the prediction methods several measures have

been considered. These measures have been used along the rest of the paper.

• Mean Square Error (MSE)

MSE =
1

r

rX
i=1

(ẑn(l)− zn+l)
2 ,

where r is the maximum horizon of prediction (8 or 12) and, its transformation, the

Root Mean Square Error (RMSE)

RMSE =
√
MSE.

• Mean Absolute Error (MAE)

MAE =
1

r

rX
i=1

|ẑn(l)− zn+l| .

• Mean Absolute Percentage Error (MAPE)

MAPE =
1

r

rX
i=1

¯̄̄̄
ẑn(l)− zn+l

zn+l

¯̄̄̄
100.
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• Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE =
1

r

rX
i=1

|ẑn(l)− zn+l|
(ẑn(l) + zn+l) /2

100,

which is the criterion recommended by Makridakis & Hibon (2000).

Tables 3 and 4 collect the ratios RMSE−NP
RMSE−BJ and MAE−NP

MAE−BJ , where RMSE-NP and

MAE-NP are root mean squared error and the mean absolute error for any of the four

nonparametric forecasts and RMSE-BJ and MAE-BJ are the same error measures per-

taining to the Box-Jenkins method. Thus, numbers smaller than one in the tables indicate

that the nonparametric forecast is more efficient than the Box-Jenkins procedure. A closer

look at Tables 2.5 and 2.6 show that, even within the linear time series (series 1-30), the

nonparametric methods beat the Box-Jenkins forecast for about 30% to 50% of the cases.

Within these nonparametric methods, the recursive Nadaraya-Watson and the direct lo-

cal linear algorithms are probably the most competitive. For the nonlinear time series

(series 31-43) the nonparametric forecast perform better than Box-Jenkins in 80% to 90%

of the series. For these series, the direct local linear method gives the best results. The

conclusions for other error measures like MAPE and SMAPE are similar.

In order to compare the 95% prediction intervals their coverage and length have been

computed. Table 5 collects the coverage percentages of the five prediction intervals, while

Table 6 gives the percentages of times that the Box-Jenkins intervals have been shorter

than the nonparametric intervals. The figures in these tables show that the coverage of

the nonparametric prediction intervals is slightly smaller than that of Box-Jenkins, except

for local linear method with the residuals based bootstrap algorithm. On the other hand,

the length of the nonparametric prediction intervals tends to be larger than the length of

Box-Jenkins intervals for linear time series, while they use to be smaller for nonlinear time

series.
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Series
RMSE

NW-D NW-R LL-D LL-R

MAE

NW-D NW-R LL-D LL-R

1 1.1076 0.9945 1.0447 1.0705 1.1243 0.9681 1.0204 1.1037

2 1.4078 1.7342 1.1964 0.9793 1.3871 1.8613 1.3743 0.9295

3 0.9181 0.9162 1.0202 1.0115 0.8742 0.8895 1.0352 1.0348

4 0.9327 0.9979 0.9265 1.2474 1.0186 1.0444 0.9860 1.2541

5 1.1024 1.2997 1.0573 1.2278 1.1068 1.2804 1.0534 1.2725

6 0.9970 0.9665 0.9533 0.9056 0.9985 0.9733 0.9659 0.9274

7 0.9644 1.1956 0.9046 0.8198 1.0087 1.3048 0.8874 0.8085

8 1.7196 1.0585 1.5406 1.6987 1.6347 0.9706 1.3214 1.7135

9 0.9145 1.0628 0.9942 1.0055 0.8746 1.0427 0.9742 1.0355

10 1.1479 0.7710 0.9551 0.9744 1.2063 0.7692 1.0154 0.9675

11 0.9938 1.0007 0.9914 1.0225 1.0668 0.9972 1.0220 1.0157

12 1.3678 0.4323 1.7364 0.8016 1.2961 0.3669 1.5732 0.8143

13 1.0484 0.9021 1.0065 0.9766 0.8921 0.8291 0.8012 0.8821

14 1.2269 0.8759 0.8918 1.3390 1.2061 0.9019 0.8298 1.3288

15 1.1162 1.6413 1.1009 1.5712 1.0304 1.4597 1.0094 1.3841

16 1.0522 1.2115 1.0149 0.9971 0.9851 1.1518 0.9904 0.9609

17 0.6321 1.5126 0.6519 0.8005 0.6419 1.5455 0.6105 0.8339

18 0.9366 0.8333 0.8921 0.8555 0.9265 0.7860 0.8987 0.8385

19 0.9098 0.9259 0.9785 0.9895 0.9414 0.9473 0.9546 1.0070

20 1.2212 1.6452 0.9274 1.0242 1.1568 1.6022 0.8625 0.9852

21 1.1025 1.0362 1.0660 1.0552 1.0165 0.9769 0.9269 0.8636

22 0.7536 0.8856 0.8082 0.8912 0.6478 0.8516 0.7643 0.8422

Table 3. Error measures ratio of the nonparametric and the Box-Jenkins forecasts for

series 1-22. The criteria considered are the root mean squared error (RMSE) and the

mean absolute error (MAE). The nonparametric forecasts considered are the direct (NW-

D) and the recursive (NW-R) Nadaraya-Watson forecasts and the direct (LL-D) and the

recursive (LL-R) local linear forecasts.
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Series
RMSE

NW-D NW-R LL-D LL-R

MAE

NW-D NW-R LL-D LL-R

23 1.0166 1.2057 0.6892 0.9315 1.0806 1.2569 0.8000 0.9143

24 1.2729 1.6524 1.4412 1.5797 1.2041 1.6434 1.3186 1.6200

25 1.2998 1.2227 1.1161 1.0640 1.4652 1.4415 1.3245 1.3126

26 1.2000 1.2389 1.4305 1.2715 1.1307 1.1574 1.3171 1.1981

27 1.2597 1.2420 1.2484 1.1637 1.2289 1.1784 1.2340 1.0513

28 0.7910 0.7361 0.7488 0.8718 0.7405 0.7436 0.7611 0.8283

29 1.0914 1.1842 1.1792 1.4255 1.1030 1.2160 1.2297 1.5198

30 1.0932 1.0478 1.0940 1.0235 1.0549 1.0261 1.0606 1.0140

31 0.8854 0.8524 0.6761 0.5429 0.8486 0.8075 0.6634 0.5548

32 0.8900 0.6174 0.9645 0.6443 0.8638 0.6024 0.9327 0.6348

33 1.0394 0.7835 0.7938 0.8172 1.1557 0.9364 0.8873 0.9838

34 0.9818 0.9146 0.9190 0.9712 1.0208 1.0216 1.0198 0.9715

35 0.8817 0.9215 0.8423 1.0338 0.8477 0.8900 0.8213 1.0181

36 1.0024 1.1260 0.9133 0.9948 0.9694 1.0823 0.8795 1.0038

37 0.9576 0.8882 0.9425 0.9039 0.9430 0.9220 0.9616 0.9345

38 0.9305 0.8712 1.0011 0.9347 0.9119 0.8363 0.9932 0.9200

39 0.9056 1.4640 0.5576 1.3182 0.9617 1.5396 0.5364 1.3626

40 0.3294 0.4020 0.4255 0.4864 0.2979 0.3464 0.3835 0.4310

41 0.9729 0.9849 0.9490 0.9867 0.9142 0.9345 0.9035 0.9502

42 0.2879 0.2890 0.2297 0.2259 0.2623 0.2632 0.1959 0.1944

43 1.0595 1.0948 0.9668 1.0626 1.0320 1.0933 0.9375 1.0630

Table 4. Error measures ratio of the nonparametric and the Box-Jenkins fore-

casts for series 23-43. The criteria considered are the root mean squared error

(RMSE) and the mean absolute error (MAE). The nonparametric forecasts

considered are the direct (NW-D) and the recursive (NW-R) Nadaraya-Watson

forecasts and the direct (LL-D) and the recursive (LL-R) local linear forecasts.

NW-RBB NW-CD LL-RBB LL-CD BJ

Coverage percentage 89.7% 87.9% 92.8% 89.7% 92.8%

Table 5. Coverage percentages of the Box-Jenkins (BJ), the Nadaraya-Watson

(NW) and the local linear (LL) prediction intervals. For the two nonparametric

approaches the residuals based bootstrap (RBB) and conditional distribution

(CD) methods have been used.

NW-RBB NW-CD LL-RBB LL-CD

Linear 58.08% 60.00% 56.15% 65.00%

Nonlinear 32.14% 47.32% 37.50% 47.32%

Overall 50.27% 56.18% 50.54% 59.68%
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Table 6. Percentages of times that the Box-Jenkins prediction interval has

been shorter than the nonparametric prediction intervals for linear, nonlinear

time series and overall. This is presented for the Nadaraya-Watson (NW) and

the local linear (LL) prediction methods and for the residuals based bootstrap

(RBB) and conditional distribution (CD).

4.3 Two case studies

Two of the series studied are analyzed in this section.

4.3.1 Series 1. Monthly shipments of a company

The first time series that is considered is a data set analyzed in Makridakis et al (1998).

These data show the monthly shipments of a company that manufactures pollution equip-

ment. It consists of 117 observations. This series is not stationary and heteroscedastic,

so the data have been transformed by taking logarithms and then differentiation. The

transformed series is homoscedastic, stationary and linear. This series is plotted in Figure

1.

,6

,3

0,0

-,3

-,6

Figure 1. Data set of monthly shipments of a company.

These data are fitted to a seasonal model of the form ARMA(2, 0)× (1, 0)12, resulting

in the equation

Zt + 0.667Zt−1 + 0.459Zt−2 = 0.014 + εt − 0.469εt−1

Figure 2 contains the autocorrelation function of the residuals of the fitted model, which

seems to be appropriate.
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Figure 2. Autocorrelation function of the residuals of the fitted model.

Applying the Portmanteau test to the squared residuals (see Maravall (1983) and

McLeod & Li (1983)) for the 16 first lags, the p-value is found to be larger than 0.20. As

a consequence, the series can be accepted to be linear.

The nonparametric forecasts using the four methods, the Box-Jenkins forecast and

the observed series have been plotted in Figure 3 (Box-Jenkins prediction and direct

Nadaraya-Watson and local linear forecasts) and Figure 4 (Box-Jenkins prediction and

recursive Nadaraya-Watson and local linear forecasts).

2520151050
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,2

0,0

-,2

-,4

Real data

LL-D

NW-D

BJ

Figure 3. Observed series, Box-Jenkins prediction (BJ) and direct nonparametric

forecasts: Nadaraya-Watson forecast (NW-D) and local linear forecast (LL-D).
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Figure 4. Observed series, Box-Jenkins prediction (BJ) and recursive nonparametric

forecasts: Nadaraya-Watson forecast (NW-R) and local linear forecast (LL-R).

The performance of the five forecasting methods can be compared using the four mea-

sures presented in Subsection 4.2. The results are collected in Table 7.

RMSE MAE MAPE SMAPE

Box Jenkins 0.0927 0.0706 52.101 63.657

Direct Nadaraya-Watson 0.0733 0.0523 55.855 2254.209

Recursive Nadaraya-Watson 0.0682 0.0525 51.098 146.851

Direct local linear 0.0694 0.0537 50.755 59.464

Recursive local linear 0.0808 0.0585 51.524 66.924

Table 7. Performance measures for the five forecasting algorithms for the monthly

shipments data.

The results in Table 7 show that the performance of the five forecasting methods is

quite similar. The figures for the nonparametric forecasts are slightly better than for

the Box-Jenkins approach, even for this series that has been accepted to be linear. On

the other hand, since the series fluctuates around zero (see Figure 1) the two measures

of relative error (MAPE and SMAPE) are misleading, since the denominators in their

definitions can be arbitrarily close to zero. This problem is even worse for SMAPE since

it is extremely sensitive to the fact that the forecast and the actual value of the series are

symmetrically situated about zero (which may be good if the actual value is very close to

zero).

Five types of 95% prediction intervals have been computed using Box-Jenkins method

and the four nonparametric approaches presented above. These correspond to the combi-

nation of the Nadaraya-Watson or local linear forecasting and the residuals based bootstrap

or the conditional distribution method for constructing the interval. All the computed pre-

diction intervals have contained the actual values of the series except the one based on
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the Nadaraya-Watson method using the conditional distribution method with lag 11 as

prediction horizon. In order to compare the performance of these methods, the lengths of

the intervals have been computed an plotted in Figure 5. Direct inspection of Figure 5

shows that intervals computed using the residuals based bootstrap tend to have smaller

length that those constructed using the conditional distribution method. Despite of the

linearity of the time series, their lengths are much smaller than those of the Box-Jenkins

intervals. This is even more evident for the Nadaraya-Watson method. On the other

hand the variability of the length (as a function of the lag) is larger for the nonparametric

methods than for the Box-Jenkins approach.

,7

,6

,5

,4

,3

,2

LL-CD

LL-RBB

NW-CD

NW-RBB

BJ

Figure 5. Lenght of the prediction intervals using the Box-Jenkins method (BJ) and any

combination of the Nadaraya-Watson (NW) or the local linear (LL) with the residual

based bootstrap (RBB) or the conditional distribution method (CD).

Figure 6 depicts the forecasts using the direct Nadaraya-Watson method together with

the 95% prediction intervals using the residuals based bootstrap. Finally, Figure 7 gives

the direct local linear forecasts and the 95% prediction intervals using the residuals based

bootstrap. The actual data, which are also included in both figures, show the good

performance of these two types of forecasts and prediction intervals.
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Figure 6. Direct Nadaraya-Watson (NW-D) forecast and residual based bootstrap

(RBB) prediction intervals.

,5

0,0

-,5

Real data

LL-D

RBB

Figure 7. Direct local linear (LL-D) forecast and residual based bootstrap (RBB)

prediction intervals.

4.3.2 Series 2. Lynx data

The second example that will be considered is the well known lynx data. This data

set consists of the annual record of the numbers of the Canadian lynx trapped in the

Mackenzie River, district of North-West, Canada, for the period 1821-1934. It is a series

of 114 observations that have been widely used along the literature (an extensive study of

this series can be found in Chapter 7 of Tong (1990)). Figure 8 contains a sequential plot

of this data set.
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Figure 8. Lynx data.

As explained above, the first 106 observations are used to fit the model and to predict

the observations 107-114. The Box-Jenkins approach leads to an ARMA(2, 2) model given

by

Zt − 1.342Zt−1 + 0.666Zt−2 = 1536.12 + εt − 0.212εt−1 − 0.261εt−2

where εt is white noise process. The autocorrelation function of the residuals of this

ARMA model is plotted in Figure 9.
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Figure 9. Autocorrelation function of the residuals from the fitted ARMA model.

It is clear from Figure 9 that the actual ARMA fitting is reasonable (among this type

of models). However, applying Portmanteau test to the squared of the residuals using

7 lags (see Maravall (1983) and McLeod & Li (1983)), the p-value is smaller than 0.05.

Thus, the series is rejected to be linear.

The nonparametric forecasts using the same four methods as in previous subsection

has been computed. Figure 10 contains the actual series, the Box Jenkins forecasts, and
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the two direct nonparametric forecasts (using the Nadaraya-Watson and the local linear

method). Figure 11 includes the actual data, the Box Jenkins forecasts, and the two

recursive nonparametric forecasts.
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Figure 10. Actual series, Box-Jenkins forecast (BJ) and direct nonparametric forecasts

(NW-D and LL-D).
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Figure 11. Actual series, Box-Jenkins forecast (BJ) and recursive nonparametric

forecasts (NW-R and LL-R).

Figures 10 and 11 show that the Nadaraya-Watson method captures the shape of the

series but its predictions are below the actual values of the series. The local linear forecast

is most of the time the best and the Box-Jenkins method presents quite poor results. The

error measures for the five forecasting methods are collected in Table 8.
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RMSE MAE MAPE SMAPE

Box Jenkins 796.81 621.10 52.07 42.85

Direct Nadaraya-Watson 828.19 717.81 54.67 58.09

Recursive Nadaraya-Watson 624.26 581.59 53.47 47.43

Direct local linear 632.50 551.10 42.84 45.11

Recursive local linear 651.17 611.05 64.97 46.37

Table 8. Performance measures for the five forecasting algorithms for the lynx

data.

Using Box-Jenkins method and the four nonparametric procedures, 95% prediction

intervals have been computed. All these intervals contained the actual value of the series

except the Nadaraya-Watson method with the conditional distribution approach, which

did not cover the real value for three of the eight prediction horizons. The mean and stan-

dard deviation of the eight prediction intervals, constructed with any of the five methods,

are reported in Table 9. The length of the intervals based on the conditional distribution

is, on the average, the smallest. However, their variability is the largest. The actual

length of the five types of intervals for the eight prediction horizons are plotted in Figure

12. This figure shows that the prediction intervals based on the conditional distribution

are the shortest for all the prediction horizons, except the first and the last one.

BJ NW-RBB NW-CD LL-RBB LL-CD

Mean 5717.67 5321.92 3534.47 5636.41 3939.17

Standard deviation 914.96 1065.61 1584.01 908.10 1847.93

Table 9. Mean and standard deviation of the length of the 95% prediction

intervals using Box-Jenkins (BJ) and any combination of the Nadaraya-Watson

(NW) or the local linear (LL) procedure with the residual based bootstrap

(RBB) or the conditional distribution approach (CD).
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Figure 12. Length (×1000) of the confidence intervals for the Box-Jenkins (BJ), the
Nadaraya-Watson (NW) and the local linear (LL) aproach. The last two nonparametric

type of forecasts have been combined with the residual based bootstrap (RBB) and the

conditional distribution (CD) method.

To illustrate the performance of some of these prediction intervals, Figure 13 contains

the real data, the Box-Jenkins and the local linear forecasts and their prediction inter-

vals. The ones pertaining to the local linear method are constructed by the conditional

distribution approach.
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Figure 13. Lynx data, Box-Jenkins (BJ) and local linear (LL) forecasts and 95%

prediction intervals using Box-Jenkins (BJ-PI) and local linear with the conditional

distribution method (LL-CD).
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5 Conclusions

The nonparametric methods for forecasting and constructing prediction in time series,

proposed in this paper, exhibit a very good performance with respect to the well-known

parametric techniques. These nonparametric algorithms give better results than the Box-

Jenkins methods for nonlinear time series and their performance is also very competitive

even for linear time series. If the number of autoregressor variables is large the curse of

dimensionality leads to inefficiency of the nonparametric methods unless the sample size

is really large. On the other hand, the nonparametric forecasting algorithms presented in

this paper are automatic procedures that do not need of any prior information.
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Appendix. Time series studied.

1. Chemical process concentration readings: every two hours. Box & Jenkins, Series

A. Linear, nonseasonal, n = 197.

2. Chemical process viscosity readings: every hours. Box & Jenkins, Series D. Linear,

nonseasonal, n = 309.

3. Batch chemical process. Box & Jenkins, Series F. Linear, nonseasonal, n = 70.

4. Number of users logged onto an Internet server each minute. Makridakis et al.

Linear, nonseasonal, n = 99.

5. Saving rate. Pankratz. Linear, nonseasonal, n = 100.

6. Coal production. Pankratz. Linear, nonseasonal, n = 96.

7. Rail freight. Pankratz. Linear, nonseasonal, n = 56.

8. Profit margin. Pankratz. Linear, nonseasonal, n = 80.

9. Monthly differences yields: mortgages and government loans. Abraham & Ledolter.

Linear, nonseasonal, n = 159.

10. Dow Jones index 28. Brockwell & Davis. Linear, nonseasonal, n = 77.

11. Monthly demand repair parts large/heavy equipment, Iowa 1972-1979. Abraham &

Ledolter. Linear, nonseasonal, n = 94.

12. Simulated series E-923. Brockwell & Davis. Linear, nonseasonal, n = 200.

13. Level of Lake Huron in feet (reduced by 570) 1875-1972. Brockwell & Davis. Linear,

nonseasonal, n = 98.

14. Annual muskrat trappings, APPI. Brockwell & Davis. Linear, nonseasonal, n = 63.

15. Annual mink trappings, APPJ. Brockwell & Davis. Linear, nonseasonal, n = 64.

16. Parts availability. Pankratz. Linear, nonseasonal, n = 81.

17. Simulated Gaussian series AR(2), E921. Brockwell & Davis. Linear, nonseasonal,

n = 192.

18. Simulated Gaussian series MA(1), E1042. Brockwell & Davis. Linear, nonseasonal,

n = 152.

19. Simulated Cauchy series MA(1), E1251. Brockwell & Davis. Linear, nonseasonal,

n = 192.
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20. Simulated Cauchy series AR(1), E1252. Brockwell & Davis. Linear, nonseasonal,

n = 192.

21. Private housing units stated, APPC. Brockwell & Davis. Linear, nonseasonal, n =

136.

22. Cigar consumption. Pankratz. Linear, seasonal, n = 83.

23. Monthly average of residential electricity usage Iowa City 1971-1979. Abraham &

Ledolter. Linear, seasonal, n = 94.

24. Monthly average of residential gas usage Iowa City (cubic feet×100) 1971-1979.
Abraham & Ledolter. Linear, seasonal, n = 96.

25. Monthly US housing starts (privately owned 1-family) 1965-1975. Abraham &

Ledolter. Linear, seasonal, n = 119.

26. Monthly car sales in Quebec 1960-1968. Abraham & Ledolter. Linear, seasonal,

n = 96.

27. Monthly industry sales for printing and writing paper, 1963-1972. Makridakis et al.

Linear, nonseasonal, n = 95.

28. Monthly shipments of a company that manufactures pollution equipment. Makri-

dakis et al. Linear, nonseasonal, n = 117.

29. Air-carrier freight. Pankratz. Linear, nonseasonal, n = 105.

30. Boston armed robberies. Pankratz. Linear, nonseasonal, n = 109.

31. Sunspot. Box & Jenkins, Series E. Nonlinear, nonseasonal, n = 100.

32. Blowfly data. Makridakis et al. Nonlinear, nonseasonal, n = 261.

33. Lynx data. Tong. Nonlinear, nonseasonal, n = 114.

34. Change in business inventories. Pankratz. Nonlinear, nonseasonal, n = 114.

35. Housing permits. Pankratz. Nonlinear, nonseasonal, n = 84.

36. Quarterly growth rates of Iowa nonfarm income. Abraham & Ledolter. Nonlinear,

nonseasonal, n = 126

37. IBM closing stock prices changes. Tong. Nonlinear, nonseasonal, n = 218

38. Chemical process. Box & Jenkins, Series C. Nonlinear, nonseasonal, n = 217

39. Simulated series. Nonlinear, nonseasonal, n = 100.

40. Simulated TAR series. Nonlinear, nonseasonal, n = 100.
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41. Simulated ARCH series. Nonlinear, nonseasonal, n = 100.

42. Pigs. Makridakis et al. Nonlinear, seasonal, n = 188.

43. General Index of Industrial Production (monthly).Brockwell & Davis. Nonlinear,

seasonal, n = 108.
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